The nucleolus has core functions in ribosome biosynthesis, but also acts as a regulatory hub in a plethora of non-canonical processes, including cellular stress. Upon DNA damage, several DNA repair factors shuttle between the nucleolus and the nucleoplasm. Yet, the molecular mechanisms underlying such spatio-temporal protein dynamics remain to be deciphered.
View Article and Find Full Text PDFThe nucleolus has been known for a long time to fulfill crucial functions in ribosome biogenesis, of which cancer cells can become addicted to in order to produce sufficient amounts of proteins for cell proliferation. Recently, the nucleolus has emerged as a central regulatory hub in many other cancer-relevant processes, including stress sensing, DNA damage response, cell cycle control, and proteostasis. This fostered the idea that nucleolar processes can be exploited in cancer therapy.
View Article and Find Full Text PDFThe prime function of nucleoli is ribogenesis, however, several other, non-canonical functions have recently been identified, including a role in genotoxic stress response. Upon DNA damage, numerous proteins shuttle dynamically between the nucleolus and the nucleoplasm, yet the underlying molecular mechanisms are incompletely understood. Here, we demonstrate that PARP1 and PARylation contribute to genotoxic stress-induced nucleolar-nucleoplasmic shuttling of key genome maintenance factors in HeLa cells.
View Article and Find Full Text PDF