Publications by authors named "Marina Diachenko"

An early disruption of neuronal excitation-inhibition (E-I) balance in preclinical animal models of Alzheimer's disease (AD) has been frequently reported, but is difficult to measure directly and non-invasively in humans. Here, we examined known and novel neurophysiological measures sensitive to E-I in patients across the AD continuum. Resting-state magnetoencephalography (MEG) data of 86 amyloid-biomarker-confirmed subjects across the AD continuum (17 patients diagnosed with subjective cognitive decline, 18 with mild cognitive impairment (MCI) and 51 with dementia due to probable AD (AD dementia)), 46 healthy elderly and 20 young control subjects were reconstructed to source-space.

View Article and Find Full Text PDF

Machine learning techniques such as deep learning have been increasingly used to assist EEG annotation, by automating artifact recognition, sleep staging, and seizure detection. In lack of automation, the annotation process is prone to bias, even for trained annotators. On the other hand, completely automated processes do not offer the users the opportunity to inspect the models' output and re-evaluate potential false predictions.

View Article and Find Full Text PDF

The development of validated algorithms for automated handling of artifacts is essential for reliable and fast processing of EEG signals. Recently, there have been methodological advances in designing machine-learning algorithms to improve artifact detection of trained professionals who usually meticulously inspect and manually annotate EEG signals. However, validation of these methods is hindered by the lack of a gold standard as data are mostly private and data annotation is time consuming and error prone.

View Article and Find Full Text PDF

The socio-economic benefits of interventions to prevent stress and related mental health problems are enormous. In the labor market, it is becoming desirable to keep employees for as long as possible. Since aging implies additional stressors such as increased risk of illness, and added pressure by professional tasks such as transferring knowledge, or learning new technologies, it is of particular relevance to offer stress-reduction to pre-retirement employees.

View Article and Find Full Text PDF