Publications by authors named "Marina Ceccarini"

Astrocytes, the main glial cells of the central nervous system, play a key role in brain volume control due to their intimate contacts with cerebral blood vessels and the expression of a distinctive equipment of proteins involved in solute/water transport. Among these is MLC1, a protein highly expressed in perivascular astrocytes and whose mutations cause megalencephalic leukoencephalopathy with subcortical cysts (MLC), an incurable leukodystrophy characterized by macrocephaly, chronic brain edema, cysts, myelin vacuolation, and astrocyte swelling. Although, in astrocytes, MLC1 mutations are known to affect the swelling-activated chloride currents (ICl,) mediated by the volume-regulated anion channel (VRAC), and the regulatory volume decrease, MLC1's proper function is still unknown.

View Article and Find Full Text PDF
Article Synopsis
  • Epidermal development relies on a delicate balance between cell growth and specialization; disruptions can lead to skin-related disorders, including cancer and ectodermal dysplasias.
  • This study focuses on two new mutations in the RIPK4 gene found in siblings with a specific ectodermal disorder, highlighting similarities with other disorders caused by different genetic factors.
  • Findings suggest that defective RIPK4 affects epithelial cell differentiation and adhesion, impacting the expression of key proteins and altering cellular structures crucial for skin integrity, linking it to broader regulatory mechanisms in skin development and disease.
View Article and Find Full Text PDF

DNA/RNA synthesis precursors are especially vulnerable to damage induced by reactive oxygen species occurring following oxidative stress. Guanosine triphosphates are the prevalent oxidized nucleotides, which can be misincorporated during replication, leading to mutations and cell death. Here, we present a novel method based on micro-Raman spectroscopy, combined with calculations, for the identification, detection, and quantification of oxidized nucleotides at low concentration.

View Article and Find Full Text PDF

In the last decades, DNA has been considered far more than the system carrying the essential genetic instructions. Indeed, because of the remarkable properties of the base-pairing specificity and thermoreversibility of the interactions, DNA plays a central role in the design of innovative architectures at the nanoscale. Here, combining complementary DNA strands with a custom-made solution of silver nanoparticles, we realize plasmonic aggregates to exploit the sensitivity of Surface Enhanced Raman Spectroscopy (SERS) for the identification/detection of the distinctive features of DNA hybridization, both in solution and on dried samples.

View Article and Find Full Text PDF

Duchenne Muscular Dystrophy, a genetic disorder that results in a gradual breakdown of muscle, is associated to mild to severe cognitive impairment in about one-third of dystrophic patients. The brain dysfunction is independent of the muscular pathology, occurs early, and is most likely due to defects in the assembly of the Dystrophin-associated Protein Complex (DPC) during embryogenesis. We have recently described the interaction of the DPC component β-dystrobrevin with members of complexes that regulate chromatin dynamics, and suggested that β-dystrobrevin may play a role in the initiation of neuronal differentiation.

View Article and Find Full Text PDF

Dysbindin, the product of the DTNBP1 gene, was identified by yeast two hybrid assay as a binding partner of dystrobrevin, a cytosolic component of the dystrophin protein complex. Although its functional role has not yet been completely elucidated, the finding that dysbindin assembles into the biogenesis of lysosome related organelles complex 1 (BLOC-1) suggests that it participates in intracellular trafficking and biogenesis of organelles and vesicles. Dysbindin is ubiquitous and in brain is expressed primarily in neurons.

View Article and Find Full Text PDF

Dystrobrevin family members (α and β) are cytoplasmic components of the dystrophin-associated glycoprotein complex, a multimeric protein complex first isolated from skeletal muscle, which links the extracellular matrix to the actin cytoskeleton. Dystrobrevin shares high homology with the cysteine-rich and C-terminal domains of dystrophin and a common domain organization. The β-dystrobrevin isoform is restricted to nonmuscle tissues, serves as a scaffold for signaling complexes, and may participate in intracellular transport through its interaction with kinesin heavy chain.

View Article and Find Full Text PDF

alpha and beta dystrobrevins are cytoplasmic components of the dystrophin-associated protein complex that are thought to play a role as scaffold proteins in signal transduction and intracellular transport. In the search of new insights into the functions of beta-dystrobrevin, the isoform restricted to non-muscle tissues, we performed a two-hybrid screen of a mouse cDNA library to look for interacting proteins. Among the positive clones, one encodes iBRAF/HMG20a, a high mobility group (HMG)-domain protein that activates REST (RE-1 silencing transcription factor)-responsive genes, playing a key role in the initiation of neuronal differentiation.

View Article and Find Full Text PDF

Peroxynitrite is a potent oxidant that contributes to tissue damage in neurodegenerative disorders. We have previously reported that treatment of rat brain synaptosomes with peroxynitrite induced post-translational modifications in pre- and post-synaptic proteins and stimulated soluble N-ethylmaleimide sensitive fusion proteins attachment receptor complex formation and endogenous glutamate release. In this study we show that, following peroxynitrite treatment, the synaptic vesicle protein synaptophysin (SYP) can be both phosphorylated and nitrated in a dose-dependent manner.

View Article and Find Full Text PDF

Missense PTPN11 mutations cause Noonan and LEOPARD syndromes (NS and LS), two developmental disorders with pleiomorphic phenotypes. PTPN11 encodes SHP2, an SH2 domain-containing protein tyrosine phosphatase functioning as a signal transducer. Generally, different substitutions of a particular amino acid residue are observed in these diseases, indicating that the crucial factor is the residue being replaced.

View Article and Find Full Text PDF

The dystrophin-related and -associated protein dystrobrevin is a component of the dystrophin-associated protein complex, which directly links the cytoskeleton to the extracellular matrix. It is now thought that this complex also serves as a dynamic scaffold for signaling proteins, and dystrobrevin may play a role in this context. Since dystrobrevin involvement in signaling pathways seems to be dependent on its interaction with other proteins, we sought new insights and performed a two-hybrid screen of a mouse brain cDNA library using beta-dystrobrevin, the isoform expressed in non-muscle tissues, as bait.

View Article and Find Full Text PDF

The dystrobrevins (alpha and beta) are components of the dystrophin-associated protein complex (DPC), which links the cytoskeleton to the extracellular matrix and serves as a scaffold for signaling proteins. The precise functions of the beta-dystrobrevin isoform, which is expressed in nonmuscle tissues, have not yet been determined. To gain further insights into the role of beta-dystrobrevin in brain, we performed a yeast two-hybrid screen and identified pancortin-2 as a novel beta-dystrobrevin-binding partner.

View Article and Find Full Text PDF

The Surface Plasmon Resonance (SPR) technique makes it possible to measure biomolecular interactions in real-time with a high degree of sensitivity and without the need of label. The information obtained is both qualitative and quantitative and it is possible to obtain the kinetic parameters of the interaction. This new technology has been used to study a diverse set of interaction partners of biological interest, such as protein-protein, protein-lipids, protein- nucleic acids or protein and low molecular weight molecules such as drugs, substrates and cofactors.

View Article and Find Full Text PDF

Dystrobrevins are a family of widely expressed dystrophin-associated proteins that comprises alpha and beta isoforms and displays significant sequence homology with several protein-binding domains of the dystrophin C-terminal region. The complex distribution of the multiple dystrobrevin isoforms suggests that the variability of their composition may be important in mediating their function. We have recently identified kinesin as a novel dystrobrevin-interacting protein and localized the dystrobrevin-binding site on the cargo-binding domain of neuronal kinesin heavy chain (Kif5A).

View Article and Find Full Text PDF

The dystrophin gene that is defective in Duchenne muscular dystrophy shows a complex transcriptional control based on several promoters driving independent cell-type-specific expression of different isoforms. Dystrophin isoforms together with dystroglycan, a transmembrane protein which in turn binds to extracellular matrix, are the core of a complex of proteins, the dystrophin-associated protein (DAP) complex, which also comprises cytoplasmic elements like dystrobrevin. Whereas the molecular organization of DAP complex in muscle is well documented, the composition of a similar complex in the nervous system remains largely unknown.

View Article and Find Full Text PDF