The Klebsiella oxytoca species complex is part of the human microbiome, especially during infancy and childhood. K. oxytoca species complex strains can produce enterotoxins, namely, tilimycin and tilivalline, while also contributing to colonization resistance (CR).
View Article and Find Full Text PDFTransfer of the gut microbiota from wild to laboratory mice alters the host's immune status and enhances resistance to infectious and metabolic diseases, but understanding of which microbes and how they promote host fitness is only emerging. Our analysis of metagenomic sequencing data reveals that Helicobacter spp. are enriched in wild compared with specific-pathogen-free (SPF) and conventionally housed mice, with multiple species commonly co-colonizing their hosts.
View Article and Find Full Text PDFThe COVID-19 pandemic remains a global health threat and novel antiviral strategies are urgently needed. SARS-CoV-2 employs the cellular serine protease TMPRSS2 for entry into lung cells, and TMPRSS2 inhibitors are being developed for COVID-19 therapy. However, the SARS-CoV-2 Omicron variant, which currently dominates the pandemic, prefers the endo/lysosomal cysteine protease cathepsin L over TMPRSS2 for cell entry, raising doubts as to whether TMPRSS2 inhibitors would be suitable for the treatment of patients infected with the Omicron variant.
View Article and Find Full Text PDF