Publications by authors named "Marina Brustolon"

The ability to discriminate the quality of ionizing radiation is important because the biological effects produced in tissue strongly depends on both absorbed dose and linear energy transfer (LET) of ionizing particles. Here we present an experimental electron spin resonance (ESR) analysis aimed at discriminating the effective LETs of various radiation beams (e.g.

View Article and Find Full Text PDF

In this work, we present a wide-range spectrochemical analysis of the degradation products from naturally aged paper. The samples obtained from wash waters used during the de-acidification treatment of leaves from a 16th-century-printed book were analysed through NMR, IR, Raman UV/Vis, EPR and X-ray fluorescence (XRF) spectroscopy and HPLC-MS and inductively coupled plasma (ICP) analysis. By these methods we also studied some of the previous samples treated by acidification (sample AP) and catalytic hydrogenation (sample HP).

View Article and Find Full Text PDF

In this paper we report on the characterization by continuous wave electron spin resonance spectroscopy (cw-ESR) of a nitronyl nitroxide radical in a nematic phase. A detailed analysis is performed by exploiting an innovative modeling strategy alternative to the usual spectral simulation approach: most of the molecular parameters needed to calculate the spectrum are evaluated a priori and the ESR spectrum is obtained by direct application of the stochastic Liouville equation. Allowing a limited set of fitting parameters it is possible to reproduce satisfactorily ESR spectra in the temperature range 260 K-340 K including the nematic-to-isotropic phase transition (325.

View Article and Find Full Text PDF

Single-molecule dark states are often attributed to photoexcited triplets with scant evidence of the participation of paramagnetic molecules. The photodynamics of blinking single molecules of 4-dicyanomethylene-2-methyl-6-p-dimethylaminostyryl-4H-pyran (DCM) in crystals of potassium hydrogen phthalate (KAP) were compared with the lifetimes of DCM triplet states, likewise in KAP, whose zero-field splitting (ZFS) tensors were fully characterized by time-resolved electron paramagnetic resonance (TR-EPR) spectroscopy. Luminescent mixed crystals of KAP were grown from solutions containing 10(-4) -10(-9) M DCM, a model optically nonlinear chromophore.

View Article and Find Full Text PDF

Using pulse electron paramagnetic resonance (EPR) on a series of l(+)-ammonium tartrate (AT) dosimeters exposed to radiations with different linear energy transfer (LET), we assessed the ability of pulse EPR spectroscopy to discriminate the quality of various radiation beams such as (60)Co gamma-ray photons, protons and thermal neutrons at various doses by analyzing the local radical distributions produced by the different beams. We performed two types of pulse EPR investigations: two-pulse electron spin echo decay obtained by varying the microwave power, and a double electron-electron resonance (DEER) study. Both methods provide information about the dipolar interactions among the free radicals and about their spatial distributions.

View Article and Find Full Text PDF

High-frequency electron paramagnetic resonance (EPR) and X-band electron-nuclear double resonance (ENDOR) spectroscopies were used to investigate the effect of gamma-irradiation on single crystals of L-tyrosine hydrochloride at room temperature. The oxidation product is the tyrosyl radical formed by hydrogen abstraction from the phenolic group; interestingly, on freshly irradiated crystals, two tyrosyl radicals were identified, characterized by slightly different magnetic parameters. In particular, one of the two radicals, with a gxx value of 2.

View Article and Find Full Text PDF

The catalytic sites of beef heart mitochondrial F1-ATPase were studied by electron spin echo envelope modulation (ESEEM) spectroscopy, using Mn(II) as a paramagnetic probe, which replaces the naturally occurring Mg(II), maintaining the enzyme catalytic activity. F1-ATPase was purified from beef heart mitochondria. A protein still containing three endogenous nucleotides, named MF1(1,2), is obtained under milder conditions, whereas a harsher treatment gives a fully depleted F1, named MF1(0,0).

View Article and Find Full Text PDF

In this work we address the interpretation, via an ab initio integrated computational approach, of continuous wave electron spin resonance (cw-ESR) spectra of p-(methylthio)phenyl nitronylnitroxide (MTPNN) dissolved in toluene. Our approach is based on the determination of the spin Hamiltonian, averaged with respect to fast vibrational motions, with magnetic tensor parameters (Zeeman and hyperfine tensors) characterized by quantum mechanical density functional calculations. The system is then described by a stochastic Liouville equation, with inclusion of diffusive rotational dynamics.

View Article and Find Full Text PDF

Two dyes (4-nitrostilbene, NST and 4-N,N-dimethylamino-4'-nitrostilbene, DANS) included in zeolites with nanometric channels and different Si : Al ratios have been photoexcited and their triplet state studied by time resolved EPR (TR-EPR). This is the first time that a TR-EPR spectrum of photoexcited triplet states of dyes in zeolites has been observed. The zeolites used were ZSM-5 and mordenite, with either protons or lithium as charge compensating ions, and the aluminium-free porosil.

View Article and Find Full Text PDF

Mixed crystals of potassium hydrogen phthalate containing 3,6-diaminoacridine were photoexcited with visible light and the resulting triplet excited states were analyzed by time resolved EPR spectroscopy. Spectra from discrete growth sectors were compared with powders and polycrystalline glasses prepared at various pHs. The data yield the predominant protonation state and orientation of the triplets in each of a pair of growth sectors bounding the positive and negative ends of the polar crystal.

View Article and Find Full Text PDF

The photoexcited triplet states of 4,4'-dipentoxy-2,2'-dithiophene (4-T2), 3,3'-dipentoxy-2,2'-dithiophene (3-T2), and 4,4'''-dipentoxy-2,2':5',2'':5'',2'''-tetrathiophene (4-T4) have been investigated by time-resolved electron paramagnetic resonance in glassy toluene and in a frozen oriented liquid crystal, which provides a partially ordered medium. The preferential orientation of the rod-like 4-T2 and 4-T4 is compared to that of the disk-like 3-T2. The use of an oriented matrix coupled to simple semiempirical calculations allowed us to determine the orientation of the principal axes of the fine interaction with respect to the molecular axes.

View Article and Find Full Text PDF

Two oligothiophenes, 4,4'-dipentoxy-2,2'-dithiophene and 4,4"-dipentoxy-2,2':5',2":5",2' ''-tetrathiophene, have been included in the nanochannels of the autoassembling host TPP (tris-o-phenylenedioxycyclotriphosphazene). The effect of the confinement on the structure and properties of the two dyes, as conformational arrangements, dynamics, and photophysical behavior, was addressed by the combination of high spinning speed solid-state NMR and time-resolved EPR spectroscopy. We compared the conformations of the dyes in their ground and photoexcited triplet states and described in detail the dynamics of the supramolecular adducts from 4 K to room temperature.

View Article and Find Full Text PDF

The high-affinity metal-binding site of isolated F(1)-ATPase from beef heart mitochondria was studied by high-field (HF) continuous wave electron paramagnetic resonance (CW-EPR) and pulsed EPR spectroscopy, using Mn(II) as a paramagnetic probe. The protein F(1) was fully depleted of endogenous Mg(II) and nucleotides [stripped F(1) or MF1(0,0)] and loaded with stoichiometric Mn(II) and stoichiometric or excess amounts of ADP or adenosine 5'-(beta,gamma-imido)-triphosphate (AMPPNP). Mn(II) and nucleotides were added to MF1(0,0) either subsequently or together as preformed complexes.

View Article and Find Full Text PDF