The role of posttranscriptional metabolic gene regulatory programs in diabetes is not well understood. Here, we show that the RNA-binding protein tristetraprolin (TTP) is reduced in the livers of diabetic mice and humans and is transcriptionally induced in response to insulin treatment in murine livers in vitro and in vivo. Liver-specific Ttp-KO (lsTtp-KO) mice challenged with high-fat diet (HFD) have improved glucose tolerance and peripheral insulin sensitivity compared with littermate controls.
View Article and Find Full Text PDFCells respond to iron deficiency by activating iron-regulatory proteins to increase cellular iron uptake and availability. However, it is not clear how cells adapt to conditions when cellular iron uptake does not fully match iron demand. Here, we show that the mRNA-binding protein tristetraprolin (TTP) is induced by iron deficiency and degrades mRNAs of mitochondrial Fe/S-cluster-containing proteins, specifically in complex I and in complex III, to match the decrease in Fe/S-cluster availability.
View Article and Find Full Text PDFPatients with type 2 diabetes often present with cardiovascular complications; however, it is not clear how diabetes promotes cardiac dysfunction. In murine models, deletion of the gene encoding aryl hydrocarbon nuclear translocator (ARNT, also known as HIF1β) in the liver or pancreas leads to a diabetic phenotype; however, the role of ARNT in cardiac metabolism is unknown. Here, we determined that cardiac-specific deletion of Arnt in adult mice results in rapid development of cardiomyopathy (CM) that is characterized by accumulation of lipid droplets.
View Article and Find Full Text PDFHIV is a pandemic disease, and many cellular and systemic factors are known to alter its infectivity and replication. Earlier studies had suggested that anemia is common in HIV-infected patients; however, higher iron was also observed in AIDS patients prior to the introduction of antiretroviral therapy (ART). Therefore, the relationship between iron and viral infection is not well delineated.
View Article and Find Full Text PDFDoxorubicin is an effective anticancer drug with known cardiotoxic side effects. It has been hypothesized that doxorubicin-dependent cardiotoxicity occurs through ROS production and possibly cellular iron accumulation. Here, we found that cardiotoxicity develops through the preferential accumulation of iron inside the mitochondria following doxorubicin treatment.
View Article and Find Full Text PDFDisorders of iron homeostasis are very common, yet the molecular mechanisms of iron regulation remain understudied. Over 20 years have passed since the first characterization of iron-regulatory proteins (IRP) as mediators of cellular iron-deficiency response in mammals through iron acquisition. However, little is known about other mechanisms necessary for adaptation to low-iron states.
View Article and Find Full Text PDFRationale: Heme plays a critical role in gas exchange, mitochondrial energy production, and antioxidant defense in cardiovascular system. The mitochondrial transporter ATP-binding cassette (ABC) B10 has been suggested to export heme out of the mitochondria and is required for normal hemoglobinization of erythropoietic cells and protection against ischemia-reperfusion injury in the heart; however, its primary function has not been established.
Objective: The aim of this study was to identify the function of ABCB10 in heme synthesis in cardiac cells.
Objectives: The goal of this study was to characterize the regulation of heme and non-heme iron in human failing hearts.
Background: Iron is an essential molecule for cellular physiology, but in excess it facilitates oxidative stress. Mitochondria are the key regulators of iron homeostasis through heme and iron-sulfur cluster synthesis.
Heart failure is a pressing public health problem with no curative treatment currently available. The existing therapies provide symptomatic relief, but are unable to reverse molecular changes that occur in cardiomyocytes. The mechanisms of heart failure are complex and multiple, but mitochondrial dysfunction appears to be a critical factor in the development of this disease.
View Article and Find Full Text PDFIron is an essential cofactor with unique redox properties. Iron-regulatory proteins 1 and 2 (IRP1/2) have been established as important regulators of cellular iron homeostasis, but little is known about the role of other pathways in this process. Here we report that the mammalian target of rapamycin (mTOR) regulates iron homeostasis by modulating transferrin receptor 1 (TfR1) stability and altering cellular iron flux.
View Article and Find Full Text PDFMitochondrial iron levels are tightly regulated, as iron is essential for the synthesis of Fe/S clusters and heme in the mitochondria, but high levels can cause oxidative stress. The ATP-binding cassette (ABC) transporter ABCB8 is a mitochondrial inner membrane protein with an unknown function. Here, we show that ABCB8 is involved in mitochondrial iron export and is essential for baseline cardiac function.
View Article and Find Full Text PDFCurr Hypertens Rep
December 2010
Hypertension is an important risk factor for the development of heart failure. Increased production of reactive oxygen species (ROS) contributes to cardiac dysfunction by activating numerous pro-hypertrophic signaling cascades and damaging the mitochondria, thus setting off a vicious cycle of ROS generation. The way in which oxidative stress leads to exacerbation of systolic and diastolic dysfunction is still unclear, however.
View Article and Find Full Text PDFCopines make up a family of soluble, calcium-dependent, membrane binding proteins found in a variety of eukaryotic organisms. In an earlier study, we identified six copine genes in the Dictyostelium discoideum genome and focused our studies on cpnA. Our previous localization studies of green fluorescent protein-tagged CpnA in Dictyostelium suggested that CpnA may have roles in contractile vacuole function, endolysosomal trafficking, and development.
View Article and Find Full Text PDFBackground: Copines are soluble, calcium-dependent membrane binding proteins found in a variety of organisms. Copines are characterized as having two C2 domains at the N-terminal region followed by an "A domain" at the C-terminal region. The "A domain" is similar in sequence to the von Willebrand A (VWA) domain found in integrins.
View Article and Find Full Text PDF