Publications by authors named "Marina B Shavelkina"

A unique nanomaterial has been developed for sweat analysis, including glucose level monitoring. Simple resusable low-cost sensors from composite materials based on graphene, hexagonal boron nitride, and conductive PEDOT:PSS (poly(3,4-ethylenedioxythiophene)polystyrene sulfonate) polymer have been developed and fabricated 2D printing on flexible substrates. The sensors were tested as biosensors using different water-based solutions.

View Article and Find Full Text PDF

Prospective composites, based on graphene (G) and hexagonal boron nitride (h-BN) nanoparticles, synthesized using a plasma jet and conducting polymer PEDOT:PSS, were used to create and study a set of sensors in the current study. The composites used were G:PEDOT:PSS (GPP) and G:h-BN:PEDOT:PSS (GBNPP). The PEDOT:PSS content in the composites was 10 wt%, and the ratio of G : h-BN was 1 : 1 in GBNPP.

View Article and Find Full Text PDF

During the pyrolysis of hydrocarbons in helium plasma jets in a plasma-chemical reactor, graphene flakes of a different structure and resistance were obtained. The presence of hydrogen in these structures was established by physicochemical methods, and its content depends on the pressure in the plasma-chemical reactor and the composition of a plasma-forming system. In addition to hydrogen, a relatively low concentration of oxygen atoms is present in the graphene flakes.

View Article and Find Full Text PDF

The structure and electric properties of hexagonal boron nitride (h-BN):graphene composite with additives of the conductive polymer PEDOT:PSS and ethylene glycol were examined. The graphene and h-BN flakes synthesized in plasma with nanometer sizes were used for experiments. It was found that the addition of more than 10 mass% of PEDOT:PSS to the graphene suspension or h-BN:graphene composite in combination with ethylene glycol leads to a strong decrease (4-5 orders of magnitude, in our case) in the resistance of the films created from these suspensions.

View Article and Find Full Text PDF

The possibility of graphene synthesis (the bottom-up approach) in plasma and the effective control of the morphology and electrical properties of graphene-based layers were demonstrated. Graphene flakes were grown in a plasma jet generated by a direct current plasma torch with helium and argon as the plasma-forming gases. In the case of argon plasma, the synthesized graphene flakes were relatively thick (2-6 nm) and non-conductive.

View Article and Find Full Text PDF