Publications by authors named "Marina B Gottikh"

To design a safe cellular system for testing inhibitors targeting the RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2, a genetic construct was engineered containing viral cDNA with two blocks of reporter genes while the genes encoding structural S, E, and M proteins were absent. The first reporter block, consisting of Renilla luciferase and green fluorescent protein (Rluc-GFP), was located upstream of the SARS-CoV-2 5'-UTR. Meanwhile, the second block represented by firefly luciferase and red fluorescent protein (Fluc-RFP) was positioned downstream of the transcription regulatory sequence (TRS-N).

View Article and Find Full Text PDF

Integration of the DNA copy of HIV-1 genome into the cellular genome results in series of damages, repair of which is critical for successful replication of the virus. We have previously demonstrated that the ATM and DNA-PK kinases, normally responsible for repairing double-strand breaks in the cellular DNA, are required to initiate the HIV-1 DNA postintegrational repair, even though integration does not result in DNA double-strand breaks. In this study, we analyzed changes in phosphorylation status of ATM (pSer1981), DNA-PK (pSer2056), and their related kinase ATR (pSer428), as well as their targets: Chk1 (pSer345), Chk2 (pThr68), H2AX (pSer139), and p53 (pSer15) during the HIV-1 DNA postintegrational repair.

View Article and Find Full Text PDF

Structural organization of HIV-1 integrase is based on a tetramer formed by two protein dimers. Within this tetramer, the catalytic domain of one subunit of the first dimer interacts with the N-terminal domain of the second dimer subunit. It is the tetrameric structure that allows both ends of the viral DNA to be correctly positioned relative to the cellular DNA and to realize catalytic functions of integrase, namely 3'-processing and strand transfer.

View Article and Find Full Text PDF

The biogenic polyamines, spermidine (Spd) and spermine (Spm), are present at millimolar concentrations in all eukaryotic cells, where they participate in the regulation of vitally important cellular functions. Polyamine analogs and derivatives are a traditional and important instrument for the investigation of the cellular functions of polyamines, enzymes of their metabolism, and the regulation of the biosynthesis of antizyme-a key downregulator of polyamine homeostasis. Here, we describe convenient gram-scale syntheses of a set of -methylated analogs of Spd.

View Article and Find Full Text PDF

The polyamines, spermine (Spm) and spermidine (Spd), are important for cell growth and function. Their homeostasis is strictly controlled, and a key downregulator of the polyamine pool is the polyamine-inducible protein, antizyme 1 (OAZ1). OAZ1 inhibits polyamine uptake and targets ornithine decarboxylase (ODC), the rate-limiting enzyme of polyamine biosynthesis, for proteasomal degradation.

View Article and Find Full Text PDF

A set of AT-specific fluorescent dimeric bisbenzimidazoles DBPA(n) with linkers of different lengths bound to DNA in the minor groove were synthesized and their genetic, virological, and biochemical studies were performed. The DBPA(n) were shown to be effective inhibitors of the histon-like protein H-NS, a regulator of the DNA transcription factor, as well as of the Aliivibrio logei Quorum Sensing regulatory system in E. coli cells.

View Article and Find Full Text PDF

Purpose: Developing and testing of microbicides for pre-exposure prophylaxis and post-exposure protection from HIV are on the list of major HIV/AIDS research priorities. To improve solubility and bioavailability of highly potent anti-retroviral drugs, we explored the use of a nanoparticle (NP) for formulating a combination of two water-insoluble HIV inhibitors.

Methods: The combination of a non-nucleoside HIV reverse transcriptase inhibitor (NNRTI), Efavirenz (EFV), and an inhibitor of HIV integrase, Elvitegravir (ELV) was stabilized with a graft copolymer of methoxypolyethylene glycol-polylysine with a hydrophobic core (HC) composed of fatty acids (HC-PGC).

View Article and Find Full Text PDF

The post-integrational gap repair is a critical and poorly studied stage of the lentiviral life cycle. It might be performed by various cellular DNA repair pathways but the exact mechanism of the repair process has not yet been described. One of the reasons for that is the lack of a functional quantitative assay that could precisely measure the amount of integrated viral DNA that has completed the post-integrational gap repair stage.

View Article and Find Full Text PDF

Human Ku70/Ku80 protein is known to influence HIV-1 replication. One of the possible reasons may be the protection of integrase from proteasomal degradation by Ku70 subunit. We demonstrated that recombinant HIV-1 integrase and Ku70 form a stable complex, while no interaction of Ku70 with integrase from prototype foamy virus was observed.

View Article and Find Full Text PDF

Human protein Ku usually functions in the cell as a complex of two subunits, Ku70 and Ku80. The Ku heterodimer plays a key role in the non-homologous end joining DNA repair pathway by specifically recognizing the DNA ends at the site of the lesion. The binding of the Ku heterodimer to DNA has been well-studied, and its interactions with RNA have been also described.

View Article and Find Full Text PDF

Benzophenone-uracil (BPU) scaffold-derived candidate compounds are efficient non-nucleoside reverse transcriptase inhibitors (NNRTI) with extremely low solubility in water. We proposed to use hydrophobic core (methoxypolyethylene glycol-polylysine) graft copolymer (HC-PGC) technology for stabilizing nanoparticle-based formulations of BPU NNRTI in water. Co-lyophilization of NNRTI/HC-PGC mixtures resulted in dry powders that could be easily reconstituted with the formation of 150-250 nm stable nanoparticles (NP).

View Article and Find Full Text PDF

We describe the preparation of two batches of a polymer support for the incorporation of folic acid into oligonucleotides. The method permits the regioselective attachment of a target nucleic acid sequence through its 3'-end to either the alpha-or gamma-carboxyl group of L-glutamic acid, respectively. The supports have been tested in solid-phase synthesis of oligonucleotide-folate conjugates for cell delivery studies.

View Article and Find Full Text PDF

To improve antisense oligonucleotide penetration inside cells, conjugates of oligonucleotides and cell-penetrating peptides, covalently linked through a phosphoramide bond, were prepared by a fragment coupling approach in the liquid phase. Two methods were used for this synthesis, i.e.

View Article and Find Full Text PDF

Hybridization properties of oligodeoxyxylonucleotides (OXNs) built from pyrimidine monomers with an inverted 3'-OH group of the furanose have been studied using the gel mobility shift, UV melting and circular dichroism (CD) spectroscopy methods. Pyrimidine OXNs form triple helices with complementary purine RNA in which one OXN is parallel and another is antiparallel with respect to the RNA target. Surprisingly, no duplex formation between the pyrimidine OXNs and purine RNAs is detected.

View Article and Find Full Text PDF

Background: The application of synthetic vectors for gene transfer has potential advantages over virus-based systems. Their use, however, is limited since they generally lack the efficiency of gene transfer achieved with recombinant viral vectors such as adenovirus. Polyamidoamine (PAMAM) and phosphorus-containing dendrimers (P-dendrimers) are specific polymers with a defined spherical structure.

View Article and Find Full Text PDF