Mechanisms of cell reprogramming by pluripotency-related transcription factors or nuclear transfer seem to be mediated by similar pathways, and the study of the contribution of OCT4 and SOX2 in both processes may help elucidate the mechanisms responsible for pluripotency. Bovine fibroblasts expressing exogenous or , or both, were analyzed regarding the expression of pluripotency factors and imprinted genes and , and used for in vitro reprogramming. The expression of the gene was increased in the control sorted group, and putative iPSC-like cells were obtained when cells were not submitted to cell sorting.
View Article and Find Full Text PDFWe evaluated the effect of the antral follicle count (AFC) on ovarian follicular dynamics, pregnancy rates, progesterone concentrations, and transcriptional patterns of genes in Nelore cattle (Bos taurus indicus) after a timed artificial insemination (TAI) programme. Cows were separated based on the AFC, and those with a high AFC showed a larger (P < 0.0001) ovarian diameter and area than those with a very low AFC.
View Article and Find Full Text PDFIn this study, porcine embryonic fibroblasts (pEFs) were reprogrammed into porcine-induced pluripotent stem cells (piPSCs) using either human or mouse specific sequences for the OCT4, SOX2, c-Myc, and KLF4 transcription factors. In total, three pEFs lines were reprogrammed, cultured for at least 15 passages, and characterized regarding their pluripotency status (alkaline phosphatase expression, embryoid body formation, expression of exogenous and endogenous genes, and immunofluorescence). Two piPSC lines were further differentiated, using chemical inhibitors, into putative neural progenitor-like (NPC-like) cells with subsequent analyses of their morphology and expression of neural markers such as NESTIN and GFAP as well as immunofluorescent labeling of NESTIN, β-TUBULIN III, and VIMENTIN.
View Article and Find Full Text PDF