Publications by authors named "Marina A Tikhonova"

Macrophages are the major cells of innate immunity with a wide range of biological effects due to their great plasticity and heterogeneity. Macrophages play a key role in neuroregeneration following nervous tissue injury. However, the neuroregenerative potential of various macrophage phenotypes, including those polarized by efferocytosis, remains unexplored.

View Article and Find Full Text PDF

Non-malignant host immune cells are the main substrate in classical Hodgkin lymphoma (HL) microenvironment. Reconstitution of lymphocyte populations following the high-dose chemotherapy (HDC) with autologous hematopoietic stem cell transplantation (auto-HSCT) can support tumor growth in HL patients. We investigated recovery dynamics of circulating CD3, CD4, CD8, CD16/CD56, CD19, CD4FOXP3 lymphocytes following auto-HSCT in 79 HL patients and assessed relationship between these populations and the development of early relapse.

View Article and Find Full Text PDF

Unlabelled: We investigated dynamics of CD4FOXP3 T cell recovery following the high-dose chemotherapy (HDC) with autologous hematopoietic stem cell transplantation (auto-HSCT) in multiple myeloma (MM) patients. Circulating CD4FOXP3 T cells of 79 MM patients were evaluated using flow cytometry before HDC with auto-HSCT, at the day of engraftment, and following 6 and 12 months. Percentage of CD4FOXP3 T cells restored rapidly following auto-HSCT, became higher than pre-transplant level at the day of engraftment and then subsequently decreased for a year.

View Article and Find Full Text PDF

The engulfment of apoptotic cells by monocytes and unprimed macrophages results in M2 polarization. In the current study, we investigated whether apoptotic cells influence the phenotypic and functional characteristics of GM-CSF-differentiated human macrophages (GM-Mφ). Our results demonstrate that GM-Mφ preincubated with apoptotic neutrophils (GM-Mφ) show significantly increased expression of CD206 and FasL and decreased capacity to stimulate allogeneic T-cell proliferation thus adopting M2 features.

View Article and Find Full Text PDF

High-dose chemotherapy with autologous hematopoietic stem-cell transplantation (AHSCT) causes severe and long-lasting immunodeficiency in patients with lymphoproliferative disorders. The thymus begins to restore the T-cell repertoire approximately from the sixth month post-transplant. We assessed the dynamics of post-transplant recovery of CD4CD45RACD31 T cells, "recent thymic emigrants" (RTEs), and a poorly described subtype of CD4CD45RACD31 T cells in 90 patients with lymphoproliferative disorders following high-dose chemotherapy with AHSCT.

View Article and Find Full Text PDF

The phenotype and functional properties of antigen-presenting cells (APC), that is, circulating monocytes and generated in vitro macrophages and dendritic cells, were investigated in the patients with pulmonary tuberculosis (TB) differing in lymphocyte reactivity to M. tuberculosis antigens (PPD-reactive versus PPD-anergic patients). We revealed the distinct impairments in patient APC functions.

View Article and Find Full Text PDF

Mesenchymal stromal cells (MSCs) possess a multi-lineage potential and immunoregulatory activities and provide a great potential in cell-based technologies. However, MSC suppressive activity raises concerns regarding the possible adverse effect of MSCs on the immune recovery. The influence of autologous MSC co-transplantation on recovery of T cell subsets in patients receiving autologous hematopoietic stem cell transplantation (AHSCT) for malignant lymphomas and multiple myeloma were characterized.

View Article and Find Full Text PDF

Background: This study aimed to test the hypothesis that immune dysfunction and the increased risk of spontaneous abortion in pregnant women with hyperandrogenia (HA) are caused by the reduced tolerogenic potential of dendritic cells (DCs) that results from elevated levels of dehydroepiandrosterone sulfate (DHEAS).

Methods: The phenotypic and functional properties of monocyte-derived DCs generated from blood monocytes from non-pregnant women, women with a normal pregnancy, or pregnant women with HA, as well as the in vitro effects of DHEAS on DCs in healthy pregnant women were investigated.

Results: In a normal pregnancy, DCs were shown to be immature and are characterized by a reduced number of CD83(+) and CD25(+) DCs, the ability to stimulate type 2 T cell responses and to induce T cell apoptosis.

View Article and Find Full Text PDF

Dendritic cell-based vaccines are considered as a new and promising immunotherapeutic approach for cancer treatment. However, the choice of optimal protocol of dendritic cell generation in vitro represents the major challenge. Here, we compared phenotype and functional characteristics of human monocyte-derived dendritic cells (DCs) generated in the presence of IL-4/GM-CSF (IL4-DCs) and IFNα/GM-CSF (IFN-DCs).

View Article and Find Full Text PDF

Recent studies have revealed that besides the important role in triggering the adoptive antitumor immunity, dendritic cells (DCs) possess direct cytotoxic antitumor activity. Here, we investigated brain glioma patient monocyte-derived DCs generated in the presence of IFNα and GM-CSF (IFN-DCs). These DCs were characterized by reduced cytotoxic activity against TRAIL-resistant HEp-2 cells.

View Article and Find Full Text PDF

The PD-1/B7-H1-mediated induction of T cell apoptosis/anergy as a possible mechanism of immune response failure was studied in 76 patients with pulmonary tuberculosis (TB) with normal and low-proliferative response to antigens of M. tuberculosis (purified protein derivative (PPD)). It was revealed that dendritic cells (DCs), generated in vitro from patient blood monocytes with GM-CSF + IFN-α, were characterized by increased B7-H1 expression, upproduction of IL-10, and reducing of allostimulatory activity in mixed lymphocyte culture (MLC).

View Article and Find Full Text PDF

It was shown that IgGs from the sera of 2-7-month-old control non-autoimmune (CBA x C57BL)F1 and BALB/c mice and 2-3-month-old autoimmune prone MRL-lpr/lpr mice (conditionally healthy mice) are catalytically inactive. During spontaneous development of deep systemic lupus erythematosus (SLE)-like pathology a specific reorganization of immune system of these mice leads to conditions associated with a production of IgGs hydrolyzing DNA, ATP and polysaccharides with low catalytic activities (conditionally pre-diseased mice).A significant increase in DNase, ATPase and amylase IgG relative activities associated with a transition from pre-diseased to deep diseased mice is correlated with additional changes in differentiation and proliferation of mice bone marrow haematopoietic stem cells (HSCs) and lymphocyte proliferation in different organs.

View Article and Find Full Text PDF

Lymphocyte proliferation and apoptosis at different stages of the development of the autoimmune disorder in MRL/MpJ-lpr mice was studied. Hematopoietic progenitor colony formation during the course of the disease was characterized. A detectable difference at the level of lymphocyte proliferation, apoptosis, and the relative amount of BFU-E, CFU-GM and CFU-GEMM cell colonies was revealed between healthy young mice and animals spontaneously developing pronounced symptoms of the autoimmune disorder.

View Article and Find Full Text PDF