Publications by authors named "Marimuthu Krishnan"

Criticality, observed during second-order phase transitions, is an emergent phenomenon. The brain operates near criticality where complex systems exhibit high correlations. As a system approaches criticality, it develops "domain"-like regions with competing phases and increased spatio-temporal correlations that diverge.

View Article and Find Full Text PDF

The histone methyltransferase ASH1L, first discovered for its role in transcription, has been shown to accelerate the removal of ultraviolet (UV) light-induced cyclobutane pyrimidine dimers (CPDs) by nucleotide excision repair. Previous reports demonstrated that CPD excision is most efficient at transcriptional regulatory elements, including enhancers, relative to other genomic sites. Therefore, we analyzed DNA damage maps in ASH1L-proficient and ASH1L-deficient cells to understand how ASH1L controls enhancer stability.

View Article and Find Full Text PDF

UV radiation-induced DNA damages have adverse effects on genome integrity and cellular function. The most prevalent UV-induced DNA lesion is the cyclobutane pyrimidine dimer (CPD), which can cause skin disorders and cancers in humans. Rad4/XPC is a damage sensing protein that recognizes and repairs CPD lesions with high fidelity.

View Article and Find Full Text PDF

G-protein coupled receptors (GPCRs) are the most prominent family of membrane proteins that serve as major targets for one-third of the drugs produced. A detailed understanding of the molecular mechanism of drug-induced activation and inhibition of GPCRs is crucial for the rational design of novel therapeutics. The binding of the neurotransmitter adrenaline to the β-adrenergic receptor (βAR) is known to induce a flight or fight cellular response, but much remains to be understood about binding-induced dynamical changes in βAR and adrenaline.

View Article and Find Full Text PDF

Configurational sampling is central to characterize the equilibrium properties of complex molecular systems, but it remains a significant computational challenge. The conventional molecular dynamics (MD) simulations of limited duration often result in inadequate sampling and thus inaccurate equilibrium estimates. Replica exchange with nonequilibrium switches (RENS) is a collective variable-free computational technique to achieve extensive sampling from a sequence of equilibrium and nonequilibrium MD simulations without modifying the underlying potential energy surface of the system.

View Article and Find Full Text PDF

Bacterial cellulase enzymes are potent candidates for the efficient production of bioethanol, a promising alternative to fossil fuels, from cellulosic biomass. These enzymes catalyze the breakdown of cellulose in plant biomass into simple sugars and then to bioethanol. In the absence of the enzyme, the cellulosic biomass is recalcitrant to decomposition due to fermentation-resistant lignin and pectin coatings on the cellulose surface, which make them inaccessible for hydrolysis.

View Article and Find Full Text PDF

Terahertz vibrations are sensitive reporters of the structure and interactions of proteins. Ligand binding alters the nature and distribution of these collective vibrations. The ligand-induced changes in the terahertz protein vibrations contribute to the binding entropy and to the overall thermodynamic stability of the resultant protein-ligand complexes.

View Article and Find Full Text PDF

The heterogeneous fast side-chain dynamics of proteins plays crucial roles in molecular recognition and binding. Site-specific NMR experiments quantify these motions by measuring the model-free order parameter () on a scale of 0 (most flexible) to 1 (least flexible) for each methyl-containing residue of proteins. Here, we have examined ligand-induced variations in the fast side-chain dynamics and conformational entropy of calmodulin (CaM) using five different CaM-peptide complexes.

View Article and Find Full Text PDF

The homodimeric catabolite activator protein (CAP) regulates the transcription of several bacterial genes based on the cellular concentration of cyclic adenosine monophosphate (cAMP). The binding of cAMP to CAP triggers allosteric communication between the cAMP binding domains (CBD) and DNA binding domains (DBD) of CAP, which entails repositioning of DNA recognition helices (F-helices) in the DBD to dock favorably to the target DNA. Despite considerable progress, much remains to be understood about the mechanistic details of DNA recognition by CAP and about the map of allosteric pathways involved in CAP-mediated gene transcription.

View Article and Find Full Text PDF

The ultraviolet (UV) radiation-induced DNA lesions play a causal role in many prevalent genetic skin-related diseases and cancers. The damage sensing protein Rad4/XPC specifically recognizes and repairs these lesions with high fidelity and safeguards genome integrity. Despite considerable progress, the mechanistic details of the mode of action of Rad4/XPC in damage recognition remain obscure.

View Article and Find Full Text PDF

DNA damage alters genetic information and adversely affects gene expression pathways leading to various complex genetic disorders and cancers. DNA repair proteins recognize and rectify DNA damage and mismatches with high fidelity. A critical molecular event that occurs during most protein-mediated DNA repair processes is the extrusion of orphaned bases at the damaged site facilitated by specific repairing enzymes.

View Article and Find Full Text PDF

A novel approach to accurately determine residue-specific noncovalent interaction strengths (ξ) of proteins from NMR-measured fast side chain motional parameters (O) is presented. By probing the environmental sensitivity of side chain conformational energy surfaces of individual residues of a diverse set of proteins, the microscopic connections between ξ, O, conformational entropy (S), conformational barriers, and rotamer stabilities established here are found to be universal among proteins. The results reveal that side chain flexibility and conformational entropy of each residue decrease with increasing ξ and that for each residue type there exists a critical range of ξ, determined primarily by the mean side chain conformational barriers, within which flexibility of any residue can be reversibly tuned from highly flexible (with O ∼ 0) to highly restricted (with O ∼ 1) by increasing ξ by ∼3 kcal/mol.

View Article and Find Full Text PDF

Proteins display characteristic dynamical signatures that appear to be universal across all proteins regardless of topology and size. Here, we systematically characterize the universal features of fast side chain motions in proteins by examining the conformational energy surfaces of individual residues obtained using enhanced sampling molecular dynamics simulation (618 free energy surfaces obtained from 0.94 μs MD simulation).

View Article and Find Full Text PDF

The relationship between the NMR methyl group axial order parameter and the side chain conformational entropy is investigated in inhibitor-bound and apo human HIV protease using molecular dynamics simulation. Three distinct entropic classes of methyl-bearing side chains, determined by the topological distance of the methyl group from the protein backbone (i.e.

View Article and Find Full Text PDF

An analytical approach is developed for reconstructing site-specific methyl-bearing protein side-chain conformational energy surfaces from NMR methyl axis order parameters (O(axis)(2)). Application of an enhanced sampling algorithm (adaptive biasing force) to molecular dynamics simulation of a protein, calcium-bound calmodulin, reveals a nonlinear correlation between O(axis)(2) and the populations of rotamer states of protein side-chains, permitting the rotamer populations to be extracted directly from O(axis)(2). The analytical approach yields side-chain conformational distributions that are in excellent agreement with those obtained from the enhanced-sampling MD results.

View Article and Find Full Text PDF

Changes in the free energy barrier (DeltaE), entropy, and motional parameters associated with the rotation of methyl groups in a protein (calmodulin (CaM)) on binding a ligand (the calmodulin-binding domain of smooth-muscle myosin (smMLCKp)) are investigated using molecular dynamics simulation. In both the bound and uncomplexed forms of CaM, the methyl rotational free energy barriers follow skewed-Gaussian distributions that are not altered significantly upon ligand binding. However, site-specific perturbations are found.

View Article and Find Full Text PDF

In the instantaneous normal mode method, normal mode analysis is performed at instantaneous configurations of a condensed-phase system, leading to modes with negative eigenvalues. These negative modes provide a means of characterizing local anharmonicities of the potential energy surface. Here, we apply instantaneous normal mode to analyze temperature-dependent diffusive dynamics in molecular dynamics simulations of a small protein (a scorpion toxin).

View Article and Find Full Text PDF