Severe anemia is an important contributor to mortality in children with severe malaria. Anemia in malaria is a multi-factorial complication, since dyserythropoiesis, hemolysis and phagocytic clearance of uninfected red blood cells (RBCs) can contribute to this syndrome. High levels of oxidative stress and immune dysregulation have been proposed to contribute to severe malarial anemia, facilitating the clearance of uninfected RBCs.
View Article and Find Full Text PDFMalaria is a highly inflammatory and oxidative disease. The production of reactive oxygen species by host phagocytes is an essential component of the host response to infection. Moreover, host oxidative enzymes, such as xanthine oxidase, are upregulated in malaria patients.
View Article and Find Full Text PDFLeukocidin ED (LukED) is a pore-forming toxin produced by , which lyses host cells and promotes virulence of the bacteria. LukED enables to acquire iron by lysing erythrocytes, which depends on targeting the host receptor Duffy antigen receptor for chemokines (DARC). The toxin also targets DARC on the endothelium, contributing to the lethality observed during bloodstream infection in mice.
View Article and Find Full Text PDFThe pathogenesis of Staphylococcus aureus is thought to depend on the production of pore-forming leukocidins that kill leukocytes and lyse erythrocytes. Two leukocidins, Leukocidin ED (LukED) and γ-Hemolysin AB (HlgAB), are necessary and sufficient to kill mice upon infection and toxin challenge. We demonstrate that LukED and HlgAB cause vascular congestion and derangements in vascular fluid distribution that rapidly cause death in mice.
View Article and Find Full Text PDF