Background: Gemcitabine, a deoxycytidine nucleoside analog, is the current standard chemotherapy used as first-line treatment for patients with locally advanced or metastatic cancer of the pancreas, and extends life survival by 5.7 months. Advanced pancreatic cancer thus remains a highly unmet medical need and new therapeutic agents are required for this patient population.
View Article and Find Full Text PDF4'-Thio-beta-D-arabinofuranosyl cytosine (TaraC) is in phase I development for treatment of cancer. In human equilibrative nucleoside transporter (hENT) 1-containing CEM cells, initial rates of uptake (10 microM; picomoles per microliter of cell water per second) of [3H]TaraC and [3H]1-beta-D-arabinofuranosyl cytosine (araC) were low (0.007 +/- 003 and 0.
View Article and Find Full Text PDFBackground: Gemcitabine is an analogue of deoxycytidine with activity against several solid tumors. In order to elucidate the mechanisms by which tumor cells become resistant to gemcitabine, we developed the resistant subline RL-G from the human follicular lymphoma cell line RL-7 by prolonged exposure of parental cells to increasing concentrations of gemcitabine.
Results: In vitro, the IC50 increased from 0.
Adequate intracellular concentrations of ara-CMP, the monophosphorylated derivative of ara-C, are essential for its cytotoxicity. The critical step for ara-CMP formation is intracellular phosphorylation of ara-C by deoxycytidine kinase (dCK). A common nucleoside resistance mechanism is mutation affecting the expression or the specificity of dCK.
View Article and Find Full Text PDFGemcitabine is a cytotoxic nucleoside analog with activity in relapsing/refractory Hodgkin's disease (HD). Because gemcitabine is hydrophilic, it requires plasma membrane nucleoside transporter proteins to access intracellular targets. The most abundant and widely distributed transporter in human cells is human equilibrative nucleoside transporter 1 (hENT1).
View Article and Find Full Text PDFGemcitabine is a relatively new agent with promising activity in solid tumors. Few data are available regarding mechanisms of resistance to gemcitabine downstream from the drug-target interaction. The present study was performed to gain insight into the role of p53 status on the cytotoxicity of gemcitabine on cancer cells.
View Article and Find Full Text PDFGemcitabine and capecitabine are nucleoside analogues used in chemotherapy strategies for the treatment of breast cancer. We previously demonstrated that deficiency in hENT1, the most abundant and widely distributed plasma membrane nucleoside transporter in human cells, confers high-level resistance to gemcitabine toxicity in vitro, whereas the relationship between hENT1 activity and capecitabine toxicity is unknown. To determine the relationship between capecitabine cytotoxicity and hENT1 abundance, cultured MDA-MB-435s human mammary carcinoma cells were exposed to graded concentrations of the capecitabine metabolites, 5'-deoxy-5-fluorouridine or 5-fluorouracil, in the presence and absence of nitrobenzylmercaptopurine ribonucleoside (NBMPR), a tight-binding inhibitor of hENT1.
View Article and Find Full Text PDF