RAS GTPases bind effectors to convert upstream cues to changes in cellular function. Effectors of classical H/K/NRAS are defined by RBD/RA domains which recognize the GTP-bound conformation of these GTPases, yet the specificity of RBD/RAs for over 160 RAS superfamily proteins remains poorly explored. We have systematically mapped interactions between BRAF and four RASSF effectors, the largest family of RA-containing proteins, with all RAS, RHO and ARF small GTPases.
View Article and Find Full Text PDFWe previously reported that the protein-tyrosine phosphatase SHP-1 (PTPN6) negatively regulates insulin signaling, but its impact on hepatic glucose metabolism and systemic glucose control remains poorly understood. Here, we use co-immunoprecipitation assays, chromatin immunoprecipitation sequencing, in silico methods, and gluconeogenesis assay, and found a new mechanism whereby SHP-1 acts as a coactivator for transcription of the phosphoenolpyruvate carboxykinase 1 (PCK1) gene to increase liver gluconeogenesis. SHP-1 is recruited to the regulatory regions of the PCK1 gene and interacts with RNA polymerase II.
View Article and Find Full Text PDFAFDN/Afadin is required for establishment and maintenance of cell-cell contacts and is a unique effector of RAS GTPases. The biological consequences of RAS complex with AFDN are unknown. We used proximity-based proteomics to generate an interaction map for two isoforms of AFDN, identifying the polarity protein SCRIB/Scribble as the top hit.
View Article and Find Full Text PDFElucidation of activation mechanisms governing protein fusions is essential for therapeutic development. MLL undergoes rearrangement with numerous partners, including a recurrent translocation fusing the epigenetic regulator to a cytoplasmic RAS effector, AF6/afadin. We show here that AF6 employs a non-canonical, evolutionarily conserved α-helix to bind RAS, unique to AF6 and the classical RASSF effectors.
View Article and Find Full Text PDFReversible protein phosphorylation catalyzed by protein kinases and phosphatases represents the most prolific and well-characterized posttranslational modification known. Here, we demonstrate that Arabidopsis (Arabidopsis thaliana) Shewanella-like protein phosphatase 2 (AtSLP2) is a bona fide Ser/Thr protein phosphatase that is targeted to the mitochondrial intermembrane space (IMS) where it interacts with the mitochondrial oxidoreductase import and assembly protein 40 (AtMIA40), forming a protein complex. Interaction with AtMIA40 is necessary for the phosphatase activity of AtSLP2 and is dependent on the formation of disulfide bridges on AtSLP2.
View Article and Find Full Text PDFThe mechanisms governing apical membrane assembly during biological tube development are poorly understood. Here, we show that extension of the C. elegans excretory canal requires cerebral cavernous malformation 3 (CCM-3), independent of the CCM1 orthologue KRI-1.
View Article and Find Full Text PDFThe lysine methyltransferase SETD6 modifies the histone variant H2AZ, a key component of nuclear receptor-dependent transcription. Herein, we report the identification of several factors that associate with SETD6 and are implicated in nuclear hormone receptor signaling. Specifically, SETD6 associates with the estrogen receptor α (ERα), histone deacetylase HDAC1, metastasis protein MTA2, and the transcriptional co-activator TRRAP.
View Article and Find Full Text PDFAffinity purification coupled with mass spectrometry (AP-MS) is a widely used approach for the identification of protein-protein interactions. However, for any given protein of interest, determining which of the identified polypeptides represent bona fide interactors versus those that are background contaminants (for example, proteins that interact with the solid-phase support, affinity reagent or epitope tag) is a challenging task. The standard approach is to identify nonspecific interactions using one or more negative-control purifications, but many small-scale AP-MS studies do not capture a complete, accurate background protein set when available controls are limited.
View Article and Find Full Text PDFAffinity purification coupled to mass spectrometry (AP-MS) is gaining widespread use for the identification of protein-protein interactions. It is unclear, however, whether typical AP sample complexity is limiting for the identification of all protein components using standard one-dimensional LC-MS/MS. Multidimensional sample separation is useful for reducing sample complexity prior to MS analysis and increases peptide and protein coverage of complex samples.
View Article and Find Full Text PDFCCM3 mutations give rise to cerebral cavernous malformations (CCMs) of the vasculature through a mechanism that remains unclear. Interaction of CCM3 with the germinal center kinase III (GCKIII) subfamily of Sterile 20 protein kinases, MST4, STK24, and STK25, has been implicated in cardiovascular development in the zebrafish, raising the possibility that dysregulated GCKIII function may contribute to the etiology of CCM disease. Here, we show that the amino-terminal region of CCM3 is necessary and sufficient to bind directly to the C-terminal tail region of GCKIII proteins.
View Article and Find Full Text PDFAffinity purification coupled to mass spectrometry (AP-MS) represents a powerful and proven approach for the analysis of protein-protein interactions. However, the detection of true interactions for proteins that are commonly considered background contaminants is currently a limitation of AP-MS. Here using spectral counts and the new statistical tool, Significance Analysis of INTeractome (SAINT), true interaction between the serine/threonine protein phosphatase 5 (PP5) and a chaperonin, heat shock protein 90 (Hsp90), is discerned.
View Article and Find Full Text PDFPP1 (protein phosphatase 1) is among the most conserved enzymes known, with one or more isoforms present in all sequenced eukaryotic genomes. PP1 dephosphorylates specific serine/threonine phosphoproteins as defined by associated regulatory or targeting subunits. In the present study we performed a PP1-binding screen to find putative PP1 interactors in Arabidopsis thaliana and uncovered a homologue of the ancient PP1 interactor, I-2 (inhibitor-2).
View Article and Find Full Text PDFAdaptor proteins respond to stimuli and recruit downstream complexes using interactions conferred by associated protein domains and linear motifs. The ShcA adaptor contains two phosphotyrosine recognition modules responsible for binding activated receptors, resulting in the subsequent recruitment of Grb2 and activation of Ras/MAPK. However, there is evidence that Grb2-independent signalling from ShcA has an important role in development.
View Article and Find Full Text PDFThe serine/threonine protein phosphatases are targeted to specific subcellular locations and substrates in part via interactions with a wide variety of regulatory proteins. Understanding these interactions is thus critical to understanding phosphatase function. Using an iterative affinity purification/mass spectrometry approach, we generated a high density interaction map surrounding the protein phosphatase 2A catalytic subunit.
View Article and Find Full Text PDFProtein serine/threonine phosphatase 4 (PP4c) is an essential polypeptide involved in critical cellular processes such as microtubule growth and organization, DNA damage checkpoint recovery, apoptosis, and tumor necrosis factor alpha signaling. Like other phosphatases of the PP2A family, PP4c interacts with regulatory proteins, which specify substrate targeting and intracellular localization. The identification of these regulatory proteins is, therefore, key to fully understanding the function of this enzyme class.
View Article and Find Full Text PDFWe have analyzed the means by which the Nck family of adaptor proteins couples adhesion proteins to actin reorganization. The nephrin adhesion protein is essential for the formation of actin-based foot processes in glomerular podocytes. The clustering of nephrin induces its tyrosine phosphorylation, Nck recruitment, and sustained localized actin polymerization.
View Article and Find Full Text PDFPleckstrin homology (PH) domains are phosphoinositide (PI)-binding modules that target proteins to membrane surfaces. Here we define a family of PH domain proteins, including Tiam1 and ArhGAP9, that demonstrates specificity for PI(4,5)P(2), as well as for PI(3,4,5)P(3) and PI(3,4)P(2), the products of PI 3-kinase. These PH domain family members utilize a non-canonical phosphoinositide binding pocket related to that employed by beta-spectrin.
View Article and Find Full Text PDFUsing functional and proteomic screens of proteins that regulate the Cdc42 GTPase, we have identified a network of protein interactions that center around the Cdc42 RhoGAP Rich1 and organize apical polarity in MDCK epithelial cells. Rich1 binds the scaffolding protein angiomotin (Amot) and is thereby targeted to a protein complex at tight junctions (TJs) containing the PDZ-domain proteins Pals1, Patj, and Par-3. Regulation of Cdc42 by Rich1 is necessary for maintenance of TJs, and Rich1 is therefore an important mediator of this polarity complex.
View Article and Find Full Text PDFBackground: Recombinational systems have been developed to rapidly shuttle Open Reading Frames (ORFs) into multiple expression vectors in order to analyze the large number of cDNAs available in the post-genomic era. In the Creator system, an ORF introduced into a donor vector can be transferred with Cre recombinase to a library of acceptor vectors optimized for different applications. Usability of the Creator system is impacted by the ability to easily manipulate DNA, the number of acceptor vectors for downstream applications, and the level of protein expression from Creator vectors.
View Article and Find Full Text PDFThe recent abundance of genome sequence data has brought an urgent need for systematic proteomics to decipher the encoded protein networks that dictate cellular function. To date, generation of large-scale protein-protein interaction maps has relied on the yeast two-hybrid system, which detects binary interactions through activation of reporter gene expression. With the advent of ultrasensitive mass spectrometric protein identification methods, it is feasible to identify directly protein complexes on a proteome-wide scale.
View Article and Find Full Text PDF