Most drugs are small molecules because of their attractive pharmacokinetics, manageable development and manufacturing, and effective binding into the concave crevices of bio-macromolecules. Despite these features, they often fall short when it comes to effectively recognizing the surfaces of bio-macromolecules. One way to overcome the challenge of biomolecular surface recognition is to develop small molecules that become self-assembled ligands (SALs) prior to binding.
View Article and Find Full Text PDFGuanosine and related derivatives self-assemble in the presence of cations like potassium into supramolecular G-quadruplexes (SGQs), where four guanine moieties form planar tetrads (T) that coaxially stack into columnar aggregates with broad size distributions. However, SGQs made from 8-aryl-2'-deoxyguanosine derivatives (8ArGs), form mostly octamers, or two-tetrad (T)-SGQs, while some form dodecamers (T-SGQs), or hexadecamers (T-SGQs), and none reported to date form higher assemblies. A theoretical model that addresses the configurational space available for the multiple pathways available for 8ArGs to self-assemble into SGQs is used to frame a series of molecular dynamics simulations (MDS) with selected SGQs.
View Article and Find Full Text PDFSelf-assembly is a powerful tool for the construction of complex nanostructures. Despite advances in the field, the development of precise self-assembled structures remains a challenge. We have shown that, in the presence of suitably sized cations like K(+), 8-aryl-2'-deoxyguanosine (8ArG) derivatives self-assemble into sets of coaxially stacked planar tetramers, which we term supramolecular G-quadruplexes (SGQs).
View Article and Find Full Text PDFSupramolecular G-quadruplexes (SGQs) are formed via the cation promoted self-assembly of guanine derivatives into stacks of planar hydrogen-bonded tetramers. Here, we present results on the formation of SGQs made from the 8-(-acetylphenyl)-2'-deoxyguanosine () derivative in the presence of various mono- and divalent cations. NMR and HR ESI-MS data indicate that varying the cation can efficiently tune the molecularity, the fidelity and stability (thermal and kinetic) of the resulting SGQs.
View Article and Find Full Text PDFControlling the properties of self-assembled supramolecules via intrinsic parameters (i.e., structural information in the subunits) enables the reliable construction of assemblies of well-defined size and composition.
View Article and Find Full Text PDFWe report the self-assembly of a hydrophilic 8-(m-acetylphenyl)-2'-deoxyguanosine (mAG) derivative into a discrete and thermally stable hexadecameric supramolecule in aqueous media. We demonstrate that this hexadecamer is isostructural to the one formed by a related lipophilic derivative in organic media. This mAG moiety represents a rare example of a small-molecule recognition motif that is capable of assembling isostructurally and with high fidelity in both organic and aqueous media.
View Article and Find Full Text PDF