Publications by authors named "Marilia M Horn"

Ultrathin fibers have been used to design functional nanostructured materials for technological and biomedical applications. Combining the use of renewable and compatible sources with the emerging alternative SBS (solution blow spinning) technique opens new opportunities for material applications. In this review, we introduce the benefits of SBS over the classical electrospinning technique by following studies that use collagen or gelatin.

View Article and Find Full Text PDF

We report a facile strategy to prepare chitosan (CS) hydrogels that eliminates the need for chemical crosslinking for advanced biomedical therapies. This approach gives controlled properties to the hydrogels by incorporating a natural bioactive phenolic compound, phloroglucinol (PG), into their microstructure. The adsorption of PG onto CS chains enhanced the hydrogels' antioxidant activity by up to 25 % and resulted in a denser, more entangled structure, reducing the pore size by 59 μm while maintaining porosity above 94 %.

View Article and Find Full Text PDF

Blends based on polylactic acid (PLA), chitosan, and grape seed extract (GE) were prepared by extrusion and injection molding. The effect of chitosan (5% and 15% on PLA basis) and natural extract (1% on PLA basis) incorporated into the PLA host matrix was explored regarding the thermal and mechanical properties. GE showed antioxidant activity, as determined by the DPPH assay method.

View Article and Find Full Text PDF

A proper valorization of biological waste sources for an effective conversion into composites for tissue engineering is discussed in this study. Hence, the collagen and the phenolic compound applied in this investigation were extracted from waste sources, respectively, fish industry rejects and the peels of the mangosteen fruit. Porous scaffolds were prepared by combining both components at different compositions and mineralized at different temperatures to evaluate the modifications in the biomimetic formation of apatite.

View Article and Find Full Text PDF

Biomaterials have been investigated as an alternative for the treatment of bone defects, such as chitosan/carbon nanotubes scaffolds, which allow cell proliferation. However, bone regeneration can be accelerated by electrotherapeutic resources that act on bone metabolism, such as low-level laser therapy (LLLT). Thus, this study evaluated the regeneration of bone lesions grafted with chitosan/carbon nanotubes scaffolds and associated with LLLT.

View Article and Find Full Text PDF

This study proposes the incorporation of mangosteen peel extract in chitosan and collagen gels and scaffolds, at different ratios, for fabricating materials with potential wound dressing applications. The extract addition increases the thermal stability of the collagen while decreasing to about one-fifth the swelling capability of its scaffolds. Oppositely, it enables chitosan and its blends to withstand high swelling percentages.

View Article and Find Full Text PDF

In this study, a potential hard tissue substitute was mimicked using collagen/mangosteen porous scaffolds. Collagen was extracted from Tilapia fish skin and mangosteen from the waste peel of the respective fruit. Sodium trimetaphosphate was used for the phosphorylation of these scaffolds to improve the nucleation sites for the mineralization process.

View Article and Find Full Text PDF

Biopolymer-based materials are potential candidates for food coatings application. In this study, pomegranate (Punica granatum L.) peel extract (PPE) at different concentrations was incorporated to chitosan/gelatin gels and the rheological, antioxidant and structural properties were evaluated.

View Article and Find Full Text PDF

This study investigates the collagen influence on thermal and morphological characteristics of chitosan/xanthan hydrogels for potential tissue engineering applications. Anionic collagen was prepared by selective hydrolysis of type I collagen found in bovine tendons. Chitosan was obtained from the partial deacetylation of squid pen β-chitin and xanthan was acquired from Fluka.

View Article and Find Full Text PDF