Publications by authors named "Marilia B C G Teixeira"

Marfan syndrome (MFS) is an autosomal dominant disease affecting cardiovascular, ocular and skeletal systems. It is caused by mutations in the fibrillin-1 (FBN1) gene, leading to structural defects of connective tissue and increased activation of TGF-β. Angiotensin II (ang-II) is involved in TGF-β activity and in bone mass regulation.

View Article and Find Full Text PDF

Evidence shows that sympathetic nervous system (SNS) activation inhibits bone formation and activates bone resorption leading to bone loss. Because thyroid hormone (TH) interacts with the SNS to control several physiological processes, we raised the hypothesis that this interaction also controls bone remodeling. We have previously shown that mice with double-gene inactivation of α2A- and -adrenoceptors (α2A/2C-AR) present high bone mass (HBM) phenotype and resistance to thyrotoxicosis-induced osteopenia, which supports a TH-SNS interaction to control bone mass and suggests that it involves α2-AR signaling.

View Article and Find Full Text PDF

To investigate whether thyroid hormone (TH) interacts with the sympathetic nervous system (SNS) to modulate bone mass and structure, we studied the effects of daily T3 treatment in a supraphysiological dose for 12 wk on the bone of young adult mice with chronic sympathetic hyperactivity owing to double-gene disruption of adrenoceptors that negatively regulate norepinephrine release, α(2A)-AR, and α(2C)-AR (α(2A/2C)-AR(-/-) mice). As expected, T3 treatment caused a generalized decrease in the areal bone mineral density (aBMD) of WT mice (determined by DEXA), followed by deleterious effects on the trabecular and cortical bone microstructural parameters (determined by μCT) of the femur and vertebra and on the biomechanical properties (maximum load, ultimate load, and stiffness) of the femur. Surprisingly, α(2A/2C)-AR(-/-) mice were resistant to most of these T3-induced negative effects.

View Article and Find Full Text PDF

Synopsis of recent research by authors named "Marilia B C G Teixeira"

  • - Marilia B C G Teixeira's research primarily focuses on the interactions between thyroid hormone, the sympathetic nervous system, and bone metabolism, particularly in the context of certain genetic conditions, like Marfan syndrome and thyrotoxicosis.
  • - Recent findings indicate that hyperkyphosis observed in Marfan syndrome does not correlate with bone mass and quality, suggesting other underlying mechanisms at play.
  • - The studies also demonstrate that disruptions in α2A adrenoceptors minimally affect overall bone tissue but provide resistance against bone loss caused by thyrotoxicosis, highlighting the complex regulatory role of adrenergic signaling in bone health.