Cancer is a major health burden worldwide. Although the plethora of molecular targets identified in the last decades and the deriving developed treatments, which significantly improved patients' outcome, the occurrence of resistance to therapies remains the major cause of relapse and mortality. Thus, efforts in identifying new markers to be exploited as molecular targets in cancer therapy are needed.
View Article and Find Full Text PDFBreast cancer prevention is a major challenge worldwide. During the last few years, efforts have been made to identify molecular breast tissue factors that could be linked to an increased risk of developing the disease in healthy women. In this concern, steroid hormones and their receptors are key players since they are deeply involved in the growth, development and lifetime changes of the mammary gland and play a crucial role in breast cancer development and progression.
View Article and Find Full Text PDFResistance to endocrine therapy is still a major clinical challenge in the management of estrogen receptor α-positive (ERα+) breast cancer (BC). Here, the role of the Forkhead box class O (FoxO)3a transcription factor in tumor progression has been evaluated in tamoxifen-resistant BC cells (TamR), expressing lower levels of FoxO3a compared to sensitive ones. FoxO3a re-expression reduces TamR motility (wound-healing and transmigration assays) and invasiveness (matrigel transwell invasion assays) through the mRNA (qRT-PCR) and protein (Western blot) induction of the integrin α5 subunit of the α5β1 fibronectin receptor, a well-known membrane heterodimer controlling cell adhesion and signaling.
View Article and Find Full Text PDFThe traditional Mediterranean Diet constitutes a food model that refers to the dietary patterns of the population living in countries bordering the Mediterranean Sea in the early 1960s. A huge volume of literature data suggests that the Mediterranean-style diet provides several dietary compounds that have been reported to exert beneficial biological effects against a wide spectrum of chronic illnesses, such as cardiovascular and neurodegenerative diseases and cancer including breast carcinoma. Among bioactive nutrients identified as protective factors for breast cancer, natural polyphenols, retinoids, and polyunsaturated fatty acids (PUFAs) have been reported to possess antioxidant, anti-inflammatory, immunomodulatory and antitumoral properties.
View Article and Find Full Text PDFResistance to endocrine treatments is a major clinical challenge in the management of estrogen receptor positive breast cancers. Although multiple mechanisms leading to endocrine resistance have been proposed, the poor outcome of this subgroup of patients demands additional studies. FoxO3a involvement in the acquisition and reversion of tamoxifen resistance was assessed in three parental ER+ breast cancer cells, MCF-7, T47D and ZR-75-1, in the deriving Tamoxifen resistant models (TamR) and in Tet-inducible TamR/FoxO3a stable cell lines, by growth curves, PLA, siRNA, RT-PCR, Western blot, Immunofluorescence, Transmission Electron Microscopy, TUNEL, cell cycle, proteomics analyses and animal models.
View Article and Find Full Text PDFBackground: Androgens, through their own receptor, play a protective role on breast tumor development and progression and counterbalance estrogen-dependent growth stimuli which are intimately linked to breast carcinogenesis.
Methods: Cell counting by trypan blu exclusion was used to study androgen effect on estrogen-dependent breast tumor growth. Quantitative Real Time RT-PCR, western blotting, transient transfection, protein immunoprecipitation and chromatin immunoprecipitation assays were carried out to investigate how androgen treatment and/or androgen receptor overexpression influences the functional interaction between the steroid receptor coactivator AIB1 and the estrogen- or androgen receptor which, in turn affects the estrogen-induced cyclin D1 gene expression in MCF-7 breast cancer cells.
Progesterone-Receptor (PR) positivity is related with an enhanced response to breast cancer therapy, conversely cyclin D1 (CD1) is a retained marker of poor outcome. Herein, we demonstrate that hydroxyprogesterone (OHPg) through progesterone receptor B (PR-B) reduces breast cancer cell aggressiveness, by targeting the cytoplasmic CD1. Specifically, OHPg diminishes CD1 expression by a transcriptional regulation due to the recruitment of PR-B at a canonical half-PRE site of the CD1 promoter, together with HDAC1, determining a chromatin conformation less prone for gene transcription.
View Article and Find Full Text PDFBreast cancer is a complex and heterogeneous disease, with distinct histologic features dictating the therapy. Although the clinical outcome of breast cancer patients has been considerably improved, the occurrence of resistance to common endocrine and chemotherapy treatments remains the major cause of relapse and mortality. Thus, efforts in identifying new molecules to be employed in breast cancer therapy are needed.
View Article and Find Full Text PDFStromal Derived Factor-1α (SDF-1α) and its cognate receptor CXCR4 play a key role in mediating breast cancer cell invasion and metastasis. Therefore, drugs able to inhibit CXCR4 activation may add critical tools to reduce tumor progression, especially in the most aggressive form of the breast cancer disease. Peroxisome Proliferator-Activated Receptor (PPAR) γ, a member of the nuclear receptor superfamily, has been found to downregulate CXCR4 gene expression in different cancer cells, however the molecular mechanism underlying this effect is not fully understood.
View Article and Find Full Text PDFCancer-associated fibroblasts (CAFs), the principal components of the tumor stroma, play a central role in cancer development and progression. As an important regulator of the crosstalk between breast cancer cells and CAFs, the cytokine leptin has been associated to breast carcinogenesis. The nuclear Farnesoid X Receptor-(FXR) seems to exert an oncosuppressive role in different tumors, including breast cancer.
View Article and Find Full Text PDFAlthough the protective role of androgen receptor (AR) in breast cancer (BC) is well established, the mechanisms involved remains largely unexplored. MicroRNAs play fundamental roles in many biological processes, including tumor cell development and metastasis. Herein, we report that androgens reduce BC cells proliferation acting as a negative modulator of the onco-miRNA-21.
View Article and Find Full Text PDFPurpose: By catalyzing cGMP hydrolysis, phosphodiesterase (PDE) 5 is a critical regulator of its concentration and effects in different (patho)physiologic processes, including cancers. As PDE5 is a known druggable target, we investigated the clinical significance of its expression in breast cancer and the underlying mechanisms by which it may contribute to tumor progression.
Experimental Design: PDE5 expression was evaluated in seven breast cancer cell lines by RT-PCR and immunoblotting.
Breast cancer stem cells (BCSCs) play crucial roles in tumor initiation, metastasis and therapeutic resistance. A strict dependency between BCSCs and stromal cell components of tumor microenvironment exists. Thus, novel therapeutic strategies aimed to target the crosstalk between activated microenvironment and BCSCs have the potential to improve clinical outcome.
View Article and Find Full Text PDFBackground: The omega-3 docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) may form conjugates with amines that have potential health benefits against common diseases including cancers. Here we synthesized DHA-dopamine (DHADA) and EPA-dopamine (EPADA) conjugates and studied their biological effects on different breast cancer cell lines.
Methods And Results: MTT assays indicated that increasing concentrations of DHADA and EPADA significantly affected viability in MCF-7, SKBR3 and MDA-MB-231 breast cancer cells, whereas no effect was observed in MCF-10A non-tumorigenic epithelial breast cells.
Extensive research over the past several decades has identified numerous dietary and phytochemical compounds that have chemopreventive potential and could represent an important source of anti-cancer lead molecules. In this scenario several nutritional factors have attracted considerable attention as modifiable risk factor in the prevention of breast cancer, the most frequently diagnosed cancer and a major cause of death among women worldwide. There is an immediate need for more effective and less toxic therapeutic and preventive strategies for breast cancers able also to counteract the recurrent phenomenon of resistance to hormonal and targeted therapy that represent the first-line treatment in the management of breast cancer patients.
View Article and Find Full Text PDFThe most common cause of male infertility is the testicular varicocele, a condition that impairs production and decreases quality of sperm. Male fertility also strictly depends on androgens acting through their own receptor. The enzyme 5α-reductase (SRD5A) is involved in the conversion of testosterone to 5α-dihydrotestosterone, both required for the development and maintenance of male reproductive function.
View Article and Find Full Text PDFLeydig cell tumors (LCTs) of the testis are steroid-secreting tumors associated with various steroid biosynthetic abnormalities and endocrine dysfunctions. Despite their overall rarity, LCTs are still of substantial interest owing to the paucity of information regarding their exact nature and malignant potential. In the present study, we disclose the ability of androgens to inhibit Leydig tumor cell proliferation by opposing to self-sufficient in situ estrogen production.
View Article and Find Full Text PDFThe tumour suppressor activity of the phosphatase and tensin homologue on chromosome 10 (PTEN) is subject of intense investigative efforts, although limited information on its regulation in breast cancer is available. Herein, we report that, in breast cancer cells, progesterone (OHPg), through its cognate receptor PR-B, positively modulates PTEN expression by inducing its mRNA and protein levels, and increasing PTEN-promoter activity. The OHPg-dependent up-regulation of PTEN gene activity requires binding of the PR-B to an Sp1-rich region within the PTEN gene promoter.
View Article and Find Full Text PDFTamoxifen resistance is a major clinical challenge in breast cancer treatment. Aromatase inhibitors are effective in women who progressed or recurred on tamoxifen, suggesting a role of local estrogen production by aromatase in driving tamoxifen-resistant phenotype. However, the link between aromatase activity and tamoxifen resistance has not yet been reported.
View Article and Find Full Text PDFIntroduction: The two isoforms of estrogen receptor (ER) alpha and beta play opposite roles in regulating proliferation and differentiation of breast cancers, with ER-alpha mediating mitogenic effects and ER-beta acting as a tumor suppressor. Emerging data have reported that androgen receptor (AR) activation inhibits ER-positive breast cancer progression mainly by antagonizing ER-alpha signaling. However, to date no studies have specifically evaluated a potential involvement of ER-beta in the inhibitory effects of androgens.
View Article and Find Full Text PDFThe study of androgens involved in male reproduction has been object of intense efforts, while their reported action on human male gametes is limited. We previously described the presence of androgen receptor (AR) in sperm with a role related to the modulation of the PI3K pathway. In the present study, we investigated the expression of AR and its ultrastructural location in normal sperm as well as in spermatozoa obtained from varicocele patients.
View Article and Find Full Text PDFSeveral studies have demonstrated that thyroid hormone T3 promotes cancer cell growth, even though the molecular mechanism involved in such processes still needs to be elucidated. In this study we demonstrated that T3 induced proliferation in papillary thyroid carcinoma cell lines concomitantly with an up-regulation of cyclin D1 expression, that is a critical mitogen-regulated cell-cycle control element. Our data revealed that T3 enhanced the recruitment of the TRβ1/Oct-1 complex on Octamer-transcription factor-1 site within cyclin D1 promoter, leading to its transactivation.
View Article and Find Full Text PDF