Publications by authors named "Marilena Gallotta"

The synthetic oligonucleotide SD-101 is a potent and specific agonist for toll-like receptor 9. Intratumoral injection of SD-101 induces significant anti-tumor immunity in preclinical and clinical studies, especially when combined with PD-1 blockade. To build upon this strategy, we studied the enhancement of SD-101 activities by combination with low-dose cyclophosphamide, a well-characterized agent with potentially complementary activities.

View Article and Find Full Text PDF

Currently approved inhibitors of the PD-1/PD-L1 pathway represent a major advance for the treatment of lung cancers, yet they are ineffective in a majority of patients due to lack of preexisting T-cell reactivity. Here, we show that a TLR9 agonist delivered by inhalation is able to prime T-cell responses against poorly immunogenic lung tumors and to complement the effects of PD-1 blockade. Inhaled TLR9 agonist causes profound remodeling in tumor-bearing lungs, leading to the formation of tertiary lymphoid structures adjacent to the tumors, CD8 T-cell infiltration into the tumors, dendritic cell expansion, and antibody production.

View Article and Find Full Text PDF

Despite the impressive rates of clinical response to programmed death 1 (PD-1) blockade in multiple cancers, the majority of patients still fail to respond to this therapy. The CT26 tumor in mice showed similar heterogeneity, with most tumors unaffected by anti-PD-1. As in humans, response of CT26 to anti-PD-1 correlated with increased T- and B-cell infiltration and IFN expression.

View Article and Find Full Text PDF

Background: Most preclinical studies assess vaccine effectiveness in single-pathogen infection models. This is unrealistic given that humans are continuously exposed to different commensals and pathogens in sequential and mixed infections. Accordingly, complications from secondary bacterial infection are a leading cause of influenza-associated morbidity and mortality.

View Article and Find Full Text PDF

Group A streptococcus (GAS) is a human pathogen causing a wide repertoire of mild and severe diseases for which no vaccine is yet available. We recently reported the identification of three protein antigens that in combination conferred wide protection against GAS infection in mice. Here we focused our attention on the characterization of one of these three antigens, Spy0269, a highly conserved, surface-exposed, and immunogenic protein of unknown function.

View Article and Find Full Text PDF

Background: Streptococcus pneumoniae serotype 1 has a high likelihood of causing invasive disease. Serotype 1 isolates belonging to CC228 are associated with low mortality, while CC217 isolates exhibit high mortality in patients.

Methods: Clinical pneumococcal isolates and mutants were evaluated in wild-type C57BL/6 mice, macrophage-depleted mice, neutrophil-depleted mice, and SIGN-R1 knockout mice.

View Article and Find Full Text PDF

Vaccines are the most effective agents to control infections. In addition to the pathogen antigens, vaccines contain adjuvants that are used to enhance protective immune responses. However, the molecular mechanism of action of most adjuvants is ill-known, and a better understanding of adjuvanticity is needed to develop improved adjuvants based on molecular targets that further enhance vaccine efficacy.

View Article and Find Full Text PDF

Unlabelled: Pneumococcal pili have been shown to influence pneumococcal colonization, disease development, and the inflammatory response in mice. The role of the pilus-associated RrgA adhesin in pneumococcal interactions with murine and human macrophages was investigated. Expression of pili with RrgA enhanced the uptake of pneumococci by murine and human macrophages that was abolished by antibodies to complement receptor 3 (CR3) and not seen in CR3-deficient macrophages.

View Article and Find Full Text PDF

We propose an experimental strategy for highly accurate selection of candidates for bacterial vaccines without using in vitro and/or in vivo protection assays. Starting from the observation that efficacious vaccines are constituted by conserved, surface-associated and/or secreted components, the strategy contemplates the parallel application of three high throughput technologies, i.e.

View Article and Find Full Text PDF

Bacterial infections caused by Group A Streptococcus (GAS) are a serious health care concern that currently cannot be prevented by vaccination. The GAS cell-wall polysaccharide (GAS-PS) is an attractive vaccine candidate due to its constant expression pattern on different bacterial strains and protective properties of anti-GAS-PS antibodies. Here we report for the first time the immunoprotective efficacy of glycoconjugates with synthetic GAS oligosaccharides as compared to those containing the native GAS-PS.

View Article and Find Full Text PDF

SpyCEP is a 170-kDa multidomain serine protease expressed on the surface of the human pathogen Streptococcus pyogenes, which plays an important role in infection by catalyzing cleavage and inactivation of the neutrophil chemoattractant interleukin-8. In this study, we investigated the biochemical features and maturation process of SpyCEP, starting from a recombinant form of the protease expressed and purified from Escherichia coli. We show that active recombinant SpyCEP differs from other bacterial proteases in that it is constituted by 2 noncovalently linked fragments derived from autocatalytic processing, an N-terminal fragment of 210 aa bearing one of the 3 catalytic triad residues, and a 1369-residue C-terminal polypeptide containing the remaining 2 catalytic amino acids.

View Article and Find Full Text PDF