Publications by authors named "Marilena De Luca"

The relevance of correlations between blood oxygenation level dependent (BOLD) signal changes across the brain acquired at rest (resting state networks, or RSN) to functional networks was tested using two quantitative criteria: (1) the localisation of major RSN correlation clusters and the task-related maxima defined in BOLD fMRI signal changes from the same subjects; and (2) the relative hemispheric lateralisation (LI) of BOLD fMRI signal changes in sensorimotor cortex. RSN were defined on the basis of signal changes correlated with that of a "seed" voxel in the primary sensorimotor cortex. We found a generally close spatial correspondence between clusters of correlated BOLD signal change in RSN and activation maxima associated with hand movement.

View Article and Find Full Text PDF

Inferring resting-state connectivity patterns from functional magnetic resonance imaging (fMRI) data is a challenging task for any analytical technique. In this paper, we review a probabilistic independent component analysis (PICA) approach, optimized for the analysis of fMRI data, and discuss the role which this exploratory technique can take in scientific investigations into the structure of these effects. We apply PICA to fMRI data acquired at rest, in order to characterize the spatio-temporal structure of such data, and demonstrate that this is an effective and robust tool for the identification of low-frequency resting-state patterns from data acquired at various different spatial and temporal resolutions.

View Article and Find Full Text PDF

The techniques available for the interrogation and analysis of neuroimaging data have a large influence in determining the flexibility, sensitivity, and scope of neuroimaging experiments. The development of such methodologies has allowed investigators to address scientific questions that could not previously be answered and, as such, has become an important research area in its own right. In this paper, we present a review of the research carried out by the Analysis Group at the Oxford Centre for Functional MRI of the Brain (FMRIB).

View Article and Find Full Text PDF