Publications by authors named "Mariko Tokito"

The epidermis regenerates continually to maintain a protective barrier at the body's surface composed of differentiating keratinocytes. Maturation of this stratified tissue requires that keratinocytes undergo wholesale organelle degradation upon reaching the outermost tissue layers to form compacted, anucleate cells. Through live imaging of organotypic cultures of human epidermis, we find that regulated breakdown of mitochondria is critical for epidermal development.

View Article and Find Full Text PDF

Neurons in the CNS establish thousands of en passant synapses along their axons. Robust neurotransmission depends on the replenishment of synaptic components in a spatially precise manner. Using live-cell microscopy and single-molecule reconstitution assays, we find that the delivery of synaptic vesicle precursors (SVPs) to en passant synapses in hippocampal neurons is specified by an interplay between the kinesin-3 KIF1A motor and presynaptic microtubules.

View Article and Find Full Text PDF

The unique polarization of neurons depends on selective sorting of axonal and somatodendritic cargos to their correct compartments. Axodendritic sorting and filtering occurs within the axon initial segment (AIS). However, the underlying molecular mechanisms responsible for this filter are not well understood.

View Article and Find Full Text PDF

The dendritic arbor is subject to continual activity-dependent remodeling, requiring a balance between directed cargo trafficking and dynamic restructuring of the underlying microtubule tracks. How cytoskeletal components are able to dynamically regulate these processes to maintain this balance remains largely unknown. By combining single-molecule assays and live imaging in rat hippocampal neurons, we have identified the kinesin-4 KIF21B as a molecular regulator of activity-dependent trafficking and microtubule dynamicity in dendrites.

View Article and Find Full Text PDF

Cytoplasmic dynein drives the majority of minus end-directed vesicular and organelle motility in the cell. However, it remains unclear how dynein is spatially and temporally regulated given the variety of cargo that must be properly localized to maintain cellular function. Recent work has suggested that adaptor proteins provide a mechanism for cargo-specific regulation of motors.

View Article and Find Full Text PDF

Dynactin is an essential cofactor for most cellular functions of the microtubule motor cytoplasmic dynein, but the mechanism by which dynactin activates dynein remains unclear. Here we use single molecule approaches to investigate dynein regulation by the dynactin subunit p150(Glued). We investigate the formation and motility of a dynein-p150(Glued) co-complex using dual-colour total internal reflection fluorescence microscopy.

View Article and Find Full Text PDF

Cytoplasmic dynein is well characterized as an organelle motor, but dynein also acts to tether and stabilize dynamic microtubule plus-ends in vitro. Here we identify a novel and direct interaction between dynein and the 180-kDa isoform of the neural cell adhesion molecule (NCAM). Optical trapping experiments indicate that dynein bound to beads via the NCAM180 interaction domain can tether projecting microtubule plus-ends.

View Article and Find Full Text PDF

Regulation of microtubule dynamics in neurons is critical, as defects in the microtubule-based transport of axonal organelles lead to neurodegenerative disease. The microtubule motor cytoplasmic dynein and its partner complex dynactin drive retrograde transport from the distal axon. We have recently shown that the p150(Glued) subunit of dynactin promotes the initiation of dynein-driven cargo motility from the microtubule plus-end.

View Article and Find Full Text PDF

Intracellular transport regulates protein turnover including endocytosis. Because of the spatial segregation of F-actin and microtubules, internalized cargo vesicles need to employ myosin and dynein motors to traverse both cytoskeletal compartments. Factors specifying cargo delivery across both tracks remain unknown.

View Article and Find Full Text PDF

Huntingtin (Htt) is a membrane-associated scaffolding protein that interacts with microtubule motors as well as actin-associated adaptor molecules. We examined a role for Htt in the dynein-mediated intracellular trafficking of endosomes and lysosomes. In HeLa cells depleted of either Htt or dynein, early, recycling, and late endosomes (LE)/lysosomes all become dispersed.

View Article and Find Full Text PDF

The microtubule motors kinesin and dynein function collectively to drive vesicular transport. High-resolution tracking of vesicle motility in the cell indicates that transport is often bidirectional, characterized by frequent directional changes. However, the mechanisms coordinating the collective activities of oppositely oriented motors bound to the same cargo are not well understood.

View Article and Find Full Text PDF

Microtubules are polarized polymers that exhibit dynamic instability, with alternating phases of elongation and shortening, particularly at the more dynamic plus-end. Microtubule plus-end tracking proteins (+TIPs) localize to and track with growing microtubule plus-ends in the cell. +TIPs regulate microtubule dynamics and mediate interactions with other cellular components.

View Article and Find Full Text PDF

Cytoplasmic dynein and dynactin interact to drive microtubule-based transport in the cell. The p150Glued subunit of dynactin binds to dynein, and directly to microtubules. We have identified alternatively spliced isoforms of p150Glued that are expressed in a tissue-specific manner and which differ significantly in their affinity for microtubules.

View Article and Find Full Text PDF

Cytoplasmic dynein is a multisubunit microtubule motor complex that, together with its activator, dynactin, drives vesicular cargo toward the minus ends of microtubules. Huntingtin (Htt) is a vesicle-associated protein found in both neuronal and nonneuronal cells that is thought to be involved in vesicular transport. In this study, we demonstrate through yeast two-hybrid and affinity chromatography assays that Htt and dynein intermediate chain interact directly; endogenous Htt and dynein co-immunoprecipitate from mouse brain cytosol.

View Article and Find Full Text PDF

The microtubule motor cytoplasmic dynein and its activator dynactin drive vesicular transport and mitotic spindle organization. Dynactin is ubiquitously expressed in eukaryotes, but a G59S mutation in the p150Glued subunit of dynactin results in the specific degeneration of motor neurons. This mutation in the conserved cytoskeleton-associated protein, glycine-rich (CAP-Gly) domain lowers the affinity of p150Glued for microtubules and EB1.

View Article and Find Full Text PDF

Microtubule plus-end proteins CLIP-170 and EB1 dynamically track the tips of growing microtubules in vivo. Here we examine the association of these proteins with microtubules in vitro. CLIP-170 binds tubulin dimers and co-assembles into growing microtubules.

View Article and Find Full Text PDF

Neurofilaments are synthesized in the cell body of neurons and transported outward along the axon via slow axonal transport. Direct observation of neurofilaments trafficking in live cells suggests that the slow outward rate of transport is due to the net effects of anterograde and retrograde microtubule motors pulling in opposition. Previous studies have suggested that cytoplasmic dynein is required for efficient neurofilament transport.

View Article and Find Full Text PDF

Cytoplasmic dynein and kinesin I are both unidirectional intracellular motors. Dynein moves cargo toward the cell center, and kinesin moves cargo toward the cell periphery. There is growing evidence that bi-directional motility is regulated in the cell, potentially through direct interactions between oppositely oriented motors.

View Article and Find Full Text PDF

Several microtubule-binding proteins including EB1, dynactin, APC, and CLIP-170 localize to the plus-ends of growing microtubules. Although these proteins can bind to microtubules independently, evidence for interactions among them has led to the hypothesis of a plus-end complex. Here we clarify the interaction between EB1 and dynactin and show that EB1 binds directly to the N-terminus of the p150(Glued) subunit.

View Article and Find Full Text PDF

Impaired axonal transport in motor neurons has been proposed as a mechanism for neuronal degeneration in motor neuron disease. Here we show linkage of a lower motor neuron disease to a region of 4 Mb at chromosome 2p13. Mutation analysis of a gene in this interval that encodes the largest subunit of the axonal transport protein dynactin showed a single base-pair change resulting in an amino-acid substitution that is predicted to distort the folding of dynactin's microtubule-binding domain.

View Article and Find Full Text PDF

To test the hypothesis that inhibition of axonal transport is sufficient to cause motor neuron degeneration such as that observed in amyotrophic lateral sclerosis (ALS), we engineered a targeted disruption of the dynein-dynactin complex in postnatal motor neurons of transgenic mice. Dynamitin overexpression was found to disassemble dynactin, a required activator of cytoplasmic dynein, resulting in an inhibition of retrograde axonal transport. Mice overexpressing dynamitin demonstrate a late-onset progressive motor neuron degenerative disease characterized by decreased strength and endurance, motor neuron degeneration and loss, and denervation of muscle.

View Article and Find Full Text PDF

We screened for polypeptides that interact specifically with dynein and identified a novel 24-kDa protein (PLAC-24) that binds directly to dynein intermediate chain (DIC). PLAC-24 is not a dynactin subunit, and the binding of PLAC-24 to the dynein intermediate chain is independent of the association between dynein and dynactin. Immunocytochemistry using PLAC-24-specific polyclonal antibodies revealed a punctate perinuclear distribution of the polypeptide in fibroblasts and isolated epithelial cells.

View Article and Find Full Text PDF