Publications by authors named "Mariko Soya"

Exercise activates the dorsal hippocampus that triggers synaptic and cellar plasticity and ultimately promotes memory formation. For decades, these benefits have been explored using demanding and stress-response-inducing exercise at moderate-to-vigorous intensities. In contrast, our translational research with animals and humans has focused on light-intensity exercise (light exercise) below the lactate threshold (LT), which almost anyone can safely perform with minimal stress.

View Article and Find Full Text PDF

Purpose: Growing concern exists worldwide about stress-related mental disorders, such as posttraumatic stress disorder (PTSD), often linked to hippocampal dysfunctions. Recognizing this connection, regular light-intensity exercise (LIE)-such as yoga, walking, or slow jogging-may offer a solution. Easily accessible even to vulnerable individuals, LIE has been found to enhance hippocampus-based cognitive functions through the stimulation of neurotrophic factors like brain-derived neurotrophic factor (BDNF).

View Article and Find Full Text PDF

Bovine leukemia virus (BLV) is an enveloped virus, found worldwide that can infect cattle and induce many subclinical symptoms and malignant tumors. BLV infection causes severe economic losses in the cattle industry. The identification of BLV-infected cattle for segregation or elimination would be the most effective way to halt the spread of BLV infection on farms, owing to the lack of effective treatments and vaccines.

View Article and Find Full Text PDF

Lignans are plant-derived compounds that act as partial estrogen agonists. Chondroitin sulfate proteoglycans (CSPGs) represent one of the major components of the extracellular matrix. Here we aimed to understand the role of sesamin (SES), a major lignan compound, in the biosynthesis and degradation of CSPGs in the mouse hippocampus because CSPGs play a key role in the regulation of cognitive functions through the promotion of adult neurogenesis.

View Article and Find Full Text PDF

A prediabetic population has an increased risk of cognitive decline and type 2 diabetes mellitus (T2DM). This study investigated whether the progression of memory dysfunction and dysregulated brain glycogen metabolism is prevented with 4 mo of exercise intervention from the presymptomatic stage in a T2DM rat model. Memory function and biochemical and molecular profiles were assessed in the presymptomatic stage of Otsuka-Long-Evans-Tokushima fatty (OLETF) rats, a T2DM model, with Long-Evans Tokushima (LETO) rats as genetic control.

View Article and Find Full Text PDF

Introduction: Exercise becomes a stress when performed at an intensity above the lactate threshold (LT) because at that point the plasma adrenocorticotropic hormone (ACTH), a marker of stress response, increases. It is possible that the exercise-induced ACTH response is regulated at least by arginine vasopressin (AVP) and possibly by corticotropin-releasing hormone (CRH), but this remains unclear. To clarify the involvement of these factors, it is useful to intervene pharmacologically in the regulatory mechanisms, with a physiologically acceptable exercise model.

View Article and Find Full Text PDF
Article Synopsis
  • Ensuring reproducibility in animal experiments, especially when relating results to humans, requires careful consideration of different animal stocks, as they can have varying physiological responses.
  • A study using Wistar rats from four different breeders found significant differences in exercise capacity and metabolic responses during a treadmill test, indicating that genetics and breeding conditions play a crucial role.
  • The findings suggest that not all Wistar rats exhibit similar exercise-induced physiological responses, emphasizing the importance of selecting the appropriate animal stock to improve the validity of experimental outcomes.
View Article and Find Full Text PDF

Cognitive dysfunction is one of the comorbidities of diabetes mellitus, but hippocampus-dependent learning and memory, a component of cognitive function, shows particular decline in type 2 diabetes, suggesting an increased risk for dementia and Alzheimer's disease. Cognitive function is related to dysregulated glucose metabolism, which is the typical cause of type 2 diabetes; however, hippocampal glycogen and its metabolite lactate are also crucial for hippocampus-dependent memory function. Type 2 diabetes induced hippocampus-dependent learning and memory dysfunction can be improved by chronic exercise and this improvement may possibly mediate through an adaptation of the astrocyte-neuron lactate shuttle (ANLS).

View Article and Find Full Text PDF

Brain glycogen stored in astrocytes produces lactate as a neuronal energy source transported by monocarboxylate transporters (MCTs) to maintain neuronal functions, such as hippocampus-regulated memory formation. Although exercise activates brain neurons, the role of astrocytic glycogen in the brain during exercise remains unknown. Since muscle glycogen fuels active muscles during exercise, we hypothesized that astrocytic glycogen plays an energetic role in the brain during exercise to maintain endurance capacity through lactate transport.

View Article and Find Full Text PDF

Brain glycogen, localized in astrocytes, produces lactate as an energy source and/or a signal factor to serve neuronal functions involved in memory formation and exercise endurance. In rodents, 4 weeks of chronic moderate exercise-enhancing endurance and cognition increases brain glycogen in the hippocampus and cortex, which is an adaption of brain metabolism achieved through exercise. Although this brain adaptation is likely induced due to the accumulation of acute endurance exercise-induced brain glycogen supercompensation, its molecular mechanisms and biomarkers are unidentified.

View Article and Find Full Text PDF

A physically active lifestyle is associated with better health in body and mind, and it is urgent that supporting agents for such lifestyles be developed. In rodents, voluntary locomotor activity as an active physical behavior may be mediated by dopaminergic neurons (DNs). Thiamine phosphate esters can stimulate DNs, and we thus hypothesized that thiamine tetrahydrofurfuryl disulfide (TTFD), a thiamine derivative, promotes locomotor activity via DNs in rats.

View Article and Find Full Text PDF

Glycogen loading (GL), a well-known type of sports conditioning, in combination with exercise and a high carbohydrate diet (HCD) for 1 week enhances individual endurance capacity through muscle glycogen supercompensation. This exercise-diet combination is necessary for successful GL. Glycogen in the brain contributes to hippocampus-related memory functions and endurance capacity.

View Article and Find Full Text PDF

Brain glycogen stored in astrocytes provides lactate as an energy source to neurons through monocarboxylate transporters (MCTs) to maintain neuronal functions such as hippocampus-regulated memory formation. Although prolonged exhaustive exercise decreases brain glycogen, the role of this decrease and lactate transport in the exercising brain remains less clear. Because muscle glycogen fuels exercising muscles, we hypothesized that astrocytic glycogen plays an energetic role in the prolonged-exercising brain to maintain endurance capacity through lactate transport.

View Article and Find Full Text PDF

Astrocyte-neuron lactate shuttle (ANLS) is a pathway that supplies glycogen-derived lactate to active neurons via monocarboxylate transporter 2 (MCT2), and is important for maintaining brain functions. Our study revealed alterations of ANLS with hippocampal hyper-glycogen levels and downregulated MCT2 protein levels underlying hippocampal dysfunctions as a complication in type 2 diabetic (T2DM) animals. Since T2DM rats exhibit brain dysfunctions involving several brain regions, we examined whether there might also be T2DM effects on ANLS's disturbances in other brain loci.

View Article and Find Full Text PDF

Aims/hypothesis: Type 2 diabetes is likely to be an independent risk factor for hippocampal-based memory dysfunction, although this complication has yet to be investigated in detail. As dysregulated glycometabolism in peripheral tissues is a key symptom of type 2 diabetes, it is hypothesised that diabetes-mediated memory dysfunction is also caused by hippocampal glycometabolic dysfunction. If so, such dysfunction should also be ameliorated with moderate exercise by normalising hippocampal glycometabolism, since 4 weeks of moderate exercise enhances memory function and local hippocampal glycogen levels in normal animals.

View Article and Find Full Text PDF

Exercise enhances adult hippocampal neurogenesis (AHN), although the exact nature of how this happens remains controversial. The beneficial effects of exercise vary depending upon the exercise condition, especially intensity. Most animal studies, however, have used wheel running, which only evaluates running distance (exercise volume) and does not consider intensity.

View Article and Find Full Text PDF