A high-accuracy analytical method is broadly required to obtain reliable research results. Thus, prompt γ-ray analysis (PGA), one of the most accurate non-destructive analytical methods, has been employed in various fields. However, the measurement accuracy of PGA is also known to degrade in hydrogenous samples.
View Article and Find Full Text PDFConsidering the expanding demand for nuclear waste management of the spent nuclear fuel materials in near future, a nondestructive analytical scheme applicable to one of the most difficult-to-measure nuclides Pd, which emits no decay γ-rays and whose half-life is too long to be decayed out during a human lifetime, was designed. The scheme consists of a sophisticated instrument capable of the detection of γ-rays by Ge detectors coupled with time-of-flight measurement of neutrons and a high-intensity pulsed neutron beam and can simultaneously perform time-of-flight-coupled prompt γ-ray analysis (TOF-PGA) as well as PGA and neutron resonance capture analysis (NRCA). The analytical capability for simulated samples of the Tc-platinum group metals (Tc-PGMs) obtained by the group-partitioning process of spent nuclear fuels, which contain not only Pd but also Tc and other difficult-to-measure fission products, was evaluated.
View Article and Find Full Text PDFThe energy-resolved neutron imaging system, RADEN, has been installed at the pulsed neutron source in the Materials and Life Science Experimental Facility of the Japan Proton Accelerator Research Complex. In addition to conventional neutron radiography and tomography, RADEN, the world's first imaging beam-line at a pulsed neutron source, provides three main options for new, quantitative neutron imaging techniques: Bragg-edge imaging to visualize the spatial distribution of crystallographic information, resonance absorption imaging for elemental composition and temperature information, and polarized neutron imaging for magnetic field information. This paper describes the results of characterization studies of the neutronic performance and installed devices at RADEN and shows the results of several demonstration studies for pulsed neutron imaging.
View Article and Find Full Text PDF