Publications by authors named "Mariko Norisada"

Tricholoma matsutake is an ectomycorrhizal (ECM) fungus capable of in vitro saprotrophic growth, but the sources of C and N used to generate sporocarps in vivo are not well understood. We examined natural abundance isotope data to investigate this phenomenon. For this purpose, C, N and their stable isotopes (C, N) content of fungal sporocarps and their potential nutrient sources (i.

View Article and Find Full Text PDF

We investigated the role of glycolysis and sucrolysis in the difference in tolerance to root hypoxia between two Myrtaceae tree species, Melaleuca cajuputi (which shows superior tolerance to root hypoxia) and Eucalyptus camaldulensis (which does not). Analysis of the adenylate energy charge (AEC) in roots subjected to a 4-day hypoxic treatment (HT) in hydroponic culture revealed that the interspecies difference in tolerance corresponds to the ability to maintain energy status under root hypoxia: AEC was reduced by HT in E. camaldulensis, but not in M.

View Article and Find Full Text PDF

We compared the photosynthetic and photoassimilate transport responses of Melaleuca cajuputi Powell seedlings to root hypoxia with those of Eucalyptus camaldulensis Dehnh. Control and hypoxia treated roots were maintained in a nutrient solution through which air or nitrogen was bubbled. Under root hypoxic conditions, seedlings of M.

View Article and Find Full Text PDF

We demonstrated that the inorganic phosphate (P(i)) requirement for growth of Japanese red pine (Pinus densiflora Sieb. & Zucc.) seedlings is increased by elevated CO(2) concentration ([CO(2)]) and that responses of the ectomycorrhizal fungus Pisolithus tinctorius (Pers.

View Article and Find Full Text PDF

In many temperate evergreen plant species, reductions in turgor loss point of leaves (Psi(tlp)) and leaf osmotic potential at full turgor (pi(sat)) occur from late summer to winter. To test the hypothesis that this seasonal change in leaf water relations is driven by root temperature, we manipulated the temperature of the roots and shoots of Cryptomeria japonica D. Don seedlings separately.

View Article and Find Full Text PDF