In this paper, we explore the advantages of a fractional calculus based watermarking system for detecting Gaussian watermarks. To reach this goal, we selected a typical watermarking scheme and replaced the detection equation set by another set of equations derived from fractional calculus principles; then, we carried out a statistical assessment of the performance of both schemes by analyzing the Receiver Operating Characteristic (ROC) curve and the False Positive Percentage (FPP) when they are used to detect Gaussian watermarks. The results show that the ROC of a fractional equation based scheme has 48.
View Article and Find Full Text PDFThis paper proposes a view-invariant gait recognition framework that employs a unique view invariant model that profits from the dimensionality reduction provided by Direct Linear Discriminant Analysis (DLDA). The framework, which employs gait energy images (GEIs), creates a single joint model that accurately classifies GEIs captured at different angles. Moreover, the proposed framework also helps to reduce the under-sampling problem (USP) that usually appears when the number of training samples is much smaller than the dimension of the feature space.
View Article and Find Full Text PDF