BackgroundCaffeine, 1,3,7-trimethylxanthine, is widely consumed by women of reproductive age. Although caffeine has been proposed to inhibit fetal growth, previous studies on the effects of caffeine on infant birth size have yielded inconsistent findings. This inconsistency may result from failure to account for individual differences in caffeine metabolism related to polymorphisms in the gene for CYP1A2, the major caffeine-metabolizing enzyme.
View Article and Find Full Text PDFIn the present study, we investigated the anticancer effects of the mitochondrial inhibitors, metaiodobenzylguanidine (MIBG), metformin and phenformin. 131I-MIBG has been used for scintigraphic detection and the targeted radiotherapy of neuroblastoma (NB), a pediatric malignancy. Non-radiolabeled MIBG has been reported to be cytotoxic to NB cells in vitro and in vivo.
View Article and Find Full Text PDFDioxins are metabolized by cytochrome P450, family 1 (CYP1) via the aromatic hydrocarbon receptor (AHR). We determined whether different blood dioxin concentrations are associated with polymorphisms in AHR (dbSNP ID: rs2066853), AHR repressor (AHRR; rs2292596), CYP1 subfamily A polypeptide 1 (CYP1A1; rs4646903 and rs1048963), CYP1 subfamily A polypeptide 2 (CYP1A2; rs762551), and CYP1 subfamily B polypeptide 1 (CYP1B1; rs1056836) in pregnant Japanese women. These six polymorphisms were detected in 421 healthy pregnant Japanese women.
View Article and Find Full Text PDF