Solid surfaces in contact with nonaqueous solvents play a key role in electrochemistry, analytical chemistry, and industrial chemistry. In this work, the zeta potentials of cotton membranes in acetonitrile solutions were determined by streaming potential and bulk conductivity measurements. By applying the Gouy-Chapman theory and the Langmuir adsorption isotherm of ions to the experimental data, the mechanism of the electrification at the cotton/acetonitrile interface is revealed for the first time to be solely due to ion adsorption on the surface, rather than proton dissociation at the interface.
View Article and Find Full Text PDFElectrifying synthesis is now a common slogan among synthetic chemists. In addition to the conventional two- or three-electrode systems that use batch-type cells, recent progress in organic electrochemical processes has been significant, including microflow electrochemical reactors, Li-ion battery-like technology, and bipolar electrochemistry. Herein we demonstrate an advanced electrosynthesis method without the application of electric power based on the concept of streaming potential-driven bipolar electrochemistry.
View Article and Find Full Text PDF