Deoxynucleoside kinase from D. melanogaster (DmdNK) has broad specificity; although it catalyzes the phosphorylation of natural pyrimidine more efficiently than natural purine nucleosides, it accepts all four 2'-deoxynucleosides and many analogues, using ATP as a phosphate donor to give the corresponding deoxynucleoside monophosphates. Here, we show that replacing a single amino acid (glutamine 81 by glutamate) in DmdNK creates a variant that also catalyzes the phosphorylation of nucleosides that form part of an artificially expanded genetic information system (AEGIS).
View Article and Find Full Text PDFActa Crystallogr C Struct Chem
December 2016
Reported here is the crystal structure of a heterocycle that implements a donor-donor-acceptor hydrogen-bonding pattern, as found in the Z component [6-amino-5-nitropyridin-2(1H)-one] of an artificially expanded genetic information system (AEGIS). AEGIS is a new form of DNA from synthetic biology that has six replicable nucleotides, rather than the four found in natural DNA. Remarkably, Z crystallizes from water as a 1:1 complex of its neutral and deprotonated forms, and forms a `skinny' pyrimidine-pyrimidine pair in this structure.
View Article and Find Full Text PDF2,4-Diaminopyrimidine (trivially K) and imidazo[1,2-a]-1,3,5-triazine-2(8H)-4(3H)-dione (trivially X) form a nucleobase pair with Watson-Crick geometry as part of an artificially expanded genetic information system (AEGIS). Neither K nor X can form a Watson-Crick pair with any natural nucleobase. Further, neither K nor X has an accessible tautomeric form or a protonated/deprotonated state that can form a Watson-Crick pair with any natural nucleobase.
View Article and Find Full Text PDFIn addition to completing the Watson-Crick nucleobase matching "concept" (big pairs with small, hydrogen bond donors pair with hydrogen bond acceptors), artificially expanded genetic information systems (AEGIS) also challenge DNA polymerases with a complete set of mismatches, including wobble mismatches. Here, we explore wobble mismatches with AEGIS with DNA polymerase 1 from Escherichia coli. Remarkably, we find that the polymerase tolerates an AEGIS:standard wobble that has the same geometry as the G:T wobble that polymerases have evolved to exclude but excludes a wobble geometry that polymerases have never encountered in natural history.
View Article and Find Full Text PDFOne frontier in synthetic biology seeks to move artificially expanded genetic information systems (AEGIS) into natural living cells and to arrange the metabolism of those cells to allow them to replicate plasmids built from these unnatural genetic systems. In addition to requiring polymerases that replicate AEGIS oligonucleotides, such cells require metabolic pathways that biosynthesize the triphosphates of AEGIS nucleosides, the substrates for those polymerases. Such pathways generally require nucleoside and nucleotide kinases to phosphorylate AEGIS nucleosides and nucleotides on the path to these triphosphates.
View Article and Find Full Text PDFBackground: Many synthetic biologists seek to increase the degree of autonomy in the assembly of long DNA (L-DNA) constructs from short synthetic DNA fragments, which are today quite inexpensive because of automated solid-phase synthesis. However, the low information density of DNA built from just four nucleotide "letters", the presence of strong (G:C) and weak (A:T) nucleobase pairs, the non-canonical folded structures that compete with Watson-Crick pairing, and other features intrinsic to natural DNA, generally prevent the autonomous assembly of short single-stranded oligonucleotides greater than a dozen or so.
Results: We describe a new strategy to autonomously assemble L-DNA constructs from fragments of synthetic single-stranded DNA.