Fusarium graminearum is one of the most destructive plant pathogens worldwide, causing fusarium head blight (FHB) on cereals. F. graminearum colonizes wheat plant surfaces with specialized unbranched hyphae called runner hyphae (RH), which develop multicelled complex appressoria called infection cushions (IC).
View Article and Find Full Text PDFMol Plant Microbe Interact
July 2020
The plant-pathogenic fungus , causal agent of Fusarium head blight (FHB) disease on small grain cereals, produces toxic trichothecenes that require facilitated export for full virulence. Two potential modes of mycotoxin transport are membrane-bound transporters, which move toxins across cellular membranes, and -ethylmaleimide-sensitive factor attachment receptor (SNARE)-mediated vesicular transport, by which toxins may be packaged as cargo in vesicles bound for organelles or the plasma membrane. In this study, we show that deletion of a gene () for a subapically localized t-SNARE protein results in growth alteration, increased sensitivity to xenobiotics, altered gene expression profiles, and reduced deoxynivalenol (DON) accumulation in vitro and in planta as well as reduced FHB symptoms on wheat.
View Article and Find Full Text PDFTrichothecene mycotoxin synthesis in the phytopathogen Fusarium graminearum involves primarily endoplasmic reticulum (ER)-localized enzymes of the mevalonate- and trichothecene biosynthetic pathways. Two exceptions are 3-hydroxy-3-methylglutaryl CoA synthase (Hms1) and trichodiene synthase (Tri5), which are known cytosolic enzymes. Using 3D structured illumination microscopy (3D SIM), GFP-tagged Tri5 and Hms1 were tested for preferential localization in the cytosol proximal to the ER.
View Article and Find Full Text PDFCompartmentalization of metabolic pathways to particular organelles is a hallmark of eukaryotic cells. Knowledge of the development of organelles and attendant pathways under different metabolic states has been advanced by live cell imaging and organelle specific analysis. Nevertheless, relatively few studies have addressed the cellular localization of pathways for synthesis of fungal secondary metabolites, despite their importance as bioactive compounds with significance to medicine and agriculture.
View Article and Find Full Text PDFCyclic 3',5'-adenosine monophosphate (cAMP) is a nucleotide derived from adenosine triphosphate that acts as a second messenger throughout all kingdoms. Intracellular cAMP levels are synthesized by a membrane-bound protein, the adenylyl cyclase. In order to analyze the function of this gene and the importance of cAMP in the life cycle of the cereal pathogen Fusarium graminearum, the adenylyl cyclase gene (FGSG_01234) was deleted by gene replacement (ΔFgac1).
View Article and Find Full Text PDFBackground: Cercospora leaf spot disease, caused by the fungus Cercospora beticola, is the most destructive foliar disease of sugar beets (Beta vulgaris) worldwide. Cercosporin, a light-inducible toxin, is essential for necrosis of the leaf tissue and development of the typical leaf spots on sugar beet leaves.
Results: In this study we show that the O-methyltransferase gene CTB2 is essential for cercosporin production and pathogenicity in two C.
Background: The mycotoxin producing fungal pathogen Fusarium graminearum is the causal agent of Fusarium head blight (FHB) of small grain cereals in fields worldwide. Although F. graminearum is highly investigated by means of molecular genetics, detailed studies about hyphal development during initial infection stages are rare.
View Article and Find Full Text PDFPlant peroxidases are involved in numerous cellular processes in plant development and stress responses. Four plasma membrane-bound peroxidases have been identified and characterized in maize (Zea mays L.) roots.
View Article and Find Full Text PDF