Publications by authors named "Marika Kientz"

In eukaryotes, GTP-bound ARF GTPases promote intracellular membrane traffic by mediating the recruitment of coat proteins, which in turn sort cargo proteins into the forming membrane vesicles. Mammals employ several classes of ARF GTPases which are activated by different ARF guanine-nucleotide exchange factors (ARF-GEFs). In contrast, flowering plants only encode evolutionarily conserved ARF1 GTPases (class I) but not the other classes II and III known from mammals, as suggested by phylogenetic analysis of ARF family members across the five major clades of eukaryotes.

View Article and Find Full Text PDF

Membrane vesicles delivered to the cell-division plane fuse with one another to form the partitioning membrane during plant cytokinesis, starting in the cell center. In Arabidopsis, this requires SNARE complexes involving the cytokinesis-specific Qa-SNARE KNOLLE. However, cytokinesis still occurs in knolle mutant embryos, suggesting contributions from KNOLLE-independent SNARE complexes.

View Article and Find Full Text PDF

Membrane trafficking is essential to fundamental processes in eukaryotic life, including cell growth and division. In plant cytokinesis, post-Golgi trafficking mediates a massive flow of vesicles that form the partitioning membrane but its regulation remains poorly understood. Here, we identify functionally redundant Arabidopsis ARF guanine-nucleotide exchange factors (ARF-GEFs) BIG1-BIG4 as regulators of post-Golgi trafficking, mediating late secretion from the trans-Golgi network but not recycling of endocytosed proteins to the plasma membrane, although the TGN also functions as an early endosome in plants.

View Article and Find Full Text PDF

In Arabidopsis thaliana, the phytohormone auxin is an important patterning agent during embryogenesis and post-embryonic development, exerting effects through transcriptional regulation. The main determinants of the transcriptional auxin response machinery are AUXIN RESPONSE FACTOR (ARF) transcription factors and AUXIN/INDOLE-3-ACETIC ACID (AUX/IAA) inhibitors. Although members of these two protein families are major developmental regulators, the transcriptional regulation of the genes encoding them has not been well explored.

View Article and Find Full Text PDF

The cell types of the plant root are first specified early during embryogenesis and are maintained throughout plant life. Auxin plays an essential role in embryonic root initiation, in part through the action of the ARF5/MP transcription factor and its auxin-labile inhibitor IAA12/BDL. MP and BDL function in embryonic cells but promote auxin transport to adjacent extraembryonic suspensor cells, including the quiescent center precursor (hypophysis).

View Article and Find Full Text PDF

Acquisition of cell identity in plants relies strongly on positional information, hence cell-cell communication and inductive signalling are instrumental for developmental patterning. During Arabidopsis embryogenesis, an extra-embryonic cell is specified to become the founder cell of the primary root meristem, hypophysis, in response to signals from adjacent embryonic cells. The auxin-dependent transcription factor MONOPTEROS (MP) drives hypophysis specification by promoting transport of the hormone auxin from the embryo to the hypophysis precursor.

View Article and Find Full Text PDF

The Arabidopsis embryonic root meristem is initiated by the specification of a single cell, the hypophysis. This event critically requires the antagonistic auxin response regulators MONOPTEROS and BODENLOS, but their mechanism of action is unknown. We show that these proteins interact and transiently act in a small subdomain of the proembryo adjacent to the future hypophysis.

View Article and Find Full Text PDF

The plant hormone auxin elicits many specific context-dependent developmental responses. Auxin promotes degradation of Aux/IAA proteins that prevent transcription factors of the auxin response factor (ARF) family from regulating auxin-responsive target genes. Aux/IAAs and ARFs are represented by large gene families in Arabidopsis.

View Article and Find Full Text PDF

Developmental responses to the plant hormone auxin are thought to be mediated by interacting pairs from two protein families: short-lived inhibitory IAA proteins and ARF transcription factors binding to auxin-response elements. monopteros mutants lacking activating ARF5 and the auxin-insensitive mutant bodenlos fail to initiate the root meristem during early embryogenesis. Here we show that the bodenlos phenotype results from an amino-acid exchange in the conserved degradation domain of IAA12.

View Article and Find Full Text PDF