The utilization of foul condensate (FC) collected from a Kraft pulp mill for the anaerobic production of volatile fatty acids (VFA) was tested in upflow anaerobic sludge blanket (UASB) reactors operated at 22, 37 and 55°C at a hydraulic retention time (HRT) of ∼75 h. The FC consisted mainly of 11370, 500 and 592 mg/L methanol, ethanol and acetone, respectively. 42-46% of the organic carbon (methanol, ethanol and acetone) was utilized in the UASB reactors operated at an organic loading of ∼8.
View Article and Find Full Text PDFStart-up of bioelectrochemical systems (BESs) fed with brewery wastewater was compared at different adjusted anode potentials (-200 and 0 mV vs. Ag/AgCl) and external resistances (50 and 1000 Ω). Current generation stabilized faster with the external resistances (9 ± 3 and 1.
View Article and Find Full Text PDFThe effect of poised anode potential on electricity production and tetrathionate degradation was studied in two-chamber flow-through electrochemical (ES) and bioelectrochemical systems (BES). The minimum anode potential (vs. Ag/AgCl) for positive current generation was 0.
View Article and Find Full Text PDFTo prevent uncontrolled acidification of the environment, reduced inorganic sulfur compounds (RISCs) can be bioelectrochemically removed from water streams. The long-term stability of bioelectricity production from tetrathionate (S4O6(2-)) was studied in highly acidic conditions (pH<2.5) in two-chamber fed-batch microbial fuel cells (MFCs).
View Article and Find Full Text PDFIn bioelectrochemical systems (BES), the catalytic activity of anaerobic microorganisms generates electrons at the anode which can be used, for example, for the production of electricity or chemical compounds. BES can be used for various purposes, including wastewater treatment, production of electricity, fuels and chemicals, biosensors, bioremediation, and desalination. Electrochemically active microorganisms are widely present in the environment and they can be found, in sediment, soil, compost, wastewaters and their treatment plants.
View Article and Find Full Text PDFTreatment of acidic solution containing 5g/L of Fe(II) and 10mg/L of As(III) was studied in a system consisting of a biological fluidized-bed reactor (FBR) for iron oxidation, and a gravity settler for iron precipitation and separation of the ferric precipitates. At pH 3.0 and FBR retention time of 5.
View Article and Find Full Text PDFInorganic sulfur compounds, such as tetrathionate, are often present in mining process and waste waters. The biodegradation of tetrathionate was studied under acidic conditions in aerobic batch cultivations and in anaerobic anodes of two-chamber flow-through microbial fuel cells (MFCs). All four cultures originating from biohydrometallurgical process waters from multimetal ore heap bioleaching oxidized tetrathionate aerobically at pH below 3 with sulfate as the main soluble metabolite.
View Article and Find Full Text PDF