Publications by authors named "Marika Doi"

Background: We investigated light attenuation at 664 nm, which is the excitation wavelength of photodynamic therapy (PDT) using talaporfin sodium, in a salted cadaver brain. Estimation of therapeutic lesions is important to ensure the effectiveness and safety of brain tumor PDT. Previously reported optical properties of the human brain vary widely.

View Article and Find Full Text PDF

To measure the few millimeter-scale macroscopic optical properties of biological tissue, including the scattering coefficient, while avoiding the instability that originates from sample slicing preparation processes, we performed propagated light intensity measurements through an optical fiber that punctures the bulk tissue while varying the fiber tip depth and the field of view (FOV) at the tip; the results were analyzed using the inverse Monte Carlo method. We realized FOV changes at the fiber tip in the bulk tissue using a variable aperture that was located outside the bulk tissue through a short high-numerical aperture (high-NA) multi-mode fiber with a quasi-straight shape. Using a homogeneous optical model solution, we verified the principle and operation of the constructed experimental system.

View Article and Find Full Text PDF

To better understand the mechanism of photodynamic cardiac ablation, we studied the effects of a photosensitization reaction (PR) performed during the first 3 min after rat myocardial cells were exposed to talaporfin sodium. A 3-mm-square microelectrode array with 64 electrodes was used to continuously measure the action potentials of the myocardial cells. A 30 μg/mL talaporfin sodium solution, a chlorine photosensitizer, was used, along with a 663-nm red diode laser (86 mW/cm for up to 600 s).

View Article and Find Full Text PDF