When developing models for clinical information retrieval and decision support systems, the discrete outcomes required for training are often missing. These labels need to be extracted from free text in electronic health records. For this extraction process one of the most important contextual properties in clinical text is negation, which indicates the absence of findings.
View Article and Find Full Text PDFDespite improved ancillary investigations in epilepsy care, patients' narratives remain indispensable for diagnosing and treatment monitoring. This wealth of information is typically stored in electronic health records and accumulated in medical journals in an unstructured manner, thereby restricting complete utilization in clinical decision-making. To this end, clinical researchers increasing apply natural language processing (NLP)-a branch of artificial intelligence-as it removes ambiguity, derives context, and imbues standardized meaning from free-narrative clinical texts.
View Article and Find Full Text PDFBackground: Social distancing has been implemented by many countries to curb the COVID-19 pandemic. Understanding public support for this policy calls for effective and efficient methods of monitoring public opinion on social distancing. Twitter analysis has been suggested as a cheaper and faster-responding alternative to traditional survey methods.
View Article and Find Full Text PDF