Cell type-specific differential gene expression analyses based on single-cell transcriptome datasets are sensitive to the presence of cell-free mRNA in the droplets containing single cells. This so-called ambient RNA contamination may differ between samples obtained from patients and healthy controls. Current ambient RNA correction methods were not developed specifically for single-cell differential gene expression (sc-DGE) analyses and might therefore not sufficiently correct for ambient RNA-derived signals.
View Article and Find Full Text PDFSingle-cell technologies have transformed our understanding of human tissues. Yet, studies typically capture only a limited number of donors and disagree on cell type definitions. Integrating many single-cell datasets can address these limitations of individual studies and capture the variability present in the population.
View Article and Find Full Text PDFRationale: Severe asthma and chronic obstructive pulmonary disease (COPD) share common pathophysiological traits such as relative corticosteroid insensitivity. We recently published three transcriptome-associated clusters (TACs) using hierarchical analysis of the sputum transcriptome in asthmatics from the Unbiased Biomarkers for the Prediction of Respiratory Disease Outcomes (U-BIOPRED) cohort comprising one Th2-high inflammatory signature (TAC1) and two Th2-low signatures (TAC2 and TAC3).
Objective: We examined whether gene expression signatures obtained in asthma can be used to identify the subgroup of patients with COPD with steroid sensitivity.
Childhood allergic diseases, including asthma, rhinitis and eczema, are prevalent conditions that share strong genetic and environmental components. Diagnosis relies on clinical history and measurements of allergen-specific IgE. We hypothesize that a multi-omics model could accurately diagnose childhood allergic disease.
View Article and Find Full Text PDFThe Human Cell Atlas (HCA) consortium aims to establish an atlas of all organs in the healthy human body at single-cell resolution to increase our understanding of basic biological processes that govern development, physiology and anatomy, and to accelerate diagnosis and treatment of disease. The Lung Biological Network of the HCA aims to generate the Human Lung Cell Atlas as a reference for the cellular repertoire, molecular cell states and phenotypes, and cell-cell interactions that characterise normal lung homeostasis in healthy lung tissue. Such a reference atlas of the healthy human lung will facilitate mapping the changes in the cellular landscape in disease.
View Article and Find Full Text PDFOur lungs are exposed daily to airborne pollutants, particulate matter, pathogens as well as lung allergens and irritants. Exposure to these substances can lead to inflammatory responses and may induce endogenous oxidant production, which can cause chronic inflammation, tissue damage and remodeling. Notably, the development of asthma and Chronic Obstructive Pulmonary Disease (COPD) is linked to the aforementioned irritants.
View Article and Find Full Text PDFMast cells (MCs) play a pathobiologic role in type 2 (T2) allergic inflammatory diseases of the airway, including asthma and chronic rhinosinusitis with nasal polyposis (CRSwNP). Distinct MC subsets infiltrate the airway mucosa in T2 disease, including subepithelial MCs expressing the proteases tryptase and chymase (MC) and epithelial MCs expressing tryptase without chymase (MC). However, mechanisms underlying MC expansion and the transcriptional programs underlying their heterogeneity are poorly understood.
View Article and Find Full Text PDFBackground And Objective: Cigarette smoking is one of the most prevalent causes of preventable deaths worldwide, leading to chronic diseases, including chronic obstructive pulmonary disease (COPD). Cigarette smoke is known to induce significant transcriptional modifications throughout the respiratory tract. However, it is largely unknown how genetic profiles influence the smoking-related transcriptional changes and how changes in gene expression translate into altered alveolar epithelial repair responses.
View Article and Find Full Text PDFPeriostin (POSTN) may serve as a biomarker for Type-2 mediated eosinophilic airway inflammation in asthma. We hypothesised that a Type-2 cytokine, interleukin (IL)-13, induces airway epithelial expression of , which in turn contributes to epithelial changes observed in asthma.We studied the effect of IL-13 on expression in BEAS-2B and air-liquid interface differentiated primary bronchial epithelial cells (PBECs).
View Article and Find Full Text PDFThe SARS-CoV-2 coronavirus, the etiologic agent responsible for COVID-19 coronavirus disease, is a global threat. To better understand viral tropism, we assessed the RNA expression of the coronavirus receptor, , as well as the viral S protein priming protease thought to govern viral entry in single-cell RNA-sequencing (scRNA-seq) datasets from healthy individuals generated by the Human Cell Atlas consortium. We found that , as well as the protease , are differentially expressed in respiratory and gut epithelial cells.
View Article and Find Full Text PDFWe investigated SARS-CoV-2 potential tropism by surveying expression of viral entry-associated genes in single-cell RNA-sequencing data from multiple tissues from healthy human donors. We co-detected these transcripts in specific respiratory, corneal and intestinal epithelial cells, potentially explaining the high efficiency of SARS-CoV-2 transmission. These genes are co-expressed in nasal epithelial cells with genes involved in innate immunity, highlighting the cells' potential role in initial viral infection, spread and clearance.
View Article and Find Full Text PDFBackground: Epigenetic signatures in the nasal epithelium, which is a primary interface with the environment and an accessible proxy for the bronchial epithelium, might provide insights into mechanisms of allergic disease.
Objective: We aimed to identify and interpret methylation signatures in nasal epithelial brushes associated with rhinitis and asthma.
Methods: Nasal epithelial brushes were obtained from 455 children at the 16-year follow-up of the Dutch Prevention and Incidence of Asthma and Mite Allergy birth cohort study.
Human lungs enable efficient gas exchange and form an interface with the environment, which depends on mucosal immunity for protection against infectious agents. Tightly controlled interactions between structural and immune cells are required to maintain lung homeostasis. Here, we use single-cell transcriptomics to chart the cellular landscape of upper and lower airways and lung parenchyma in healthy lungs, and lower airways in asthmatic lungs.
View Article and Find Full Text PDF