Publications by authors named "Marijke A H Luttik"

Chemically defined media for cultivation of Saccharomyces cerevisiae strains are commonly supplemented with a mixture of multiple Class-B vitamins, whose omission leads to strongly reduced growth rates. Fast growth without vitamin supplementation is interesting for industrial applications, as it reduces costs and complexity of medium preparation and may decrease susceptibility to contamination by auxotrophic microbes. In this study, suboptimal growth rates of S.

View Article and Find Full Text PDF

Analysis of predicted fungal proteomes revealed a large family of sequences that showed similarity to the Saccharomyces cerevisiae Class-I dihydroorotate dehydrogenase Ura1, which supports synthesis of pyrimidines under aerobic and anaerobic conditions. However, expression of codon-optimised representatives of this gene family, from the ascomycete Alternaria alternata and the basidiomycete Schizophyllum commune, only supported growth of an S. cerevisiae ura1Δ mutant when synthetic media were supplemented with dihydrouracil.

View Article and Find Full Text PDF

Although transplantation of single genes in yeast plays a key role in elucidating gene functionality in metazoans, technical challenges hamper humanization of full pathways and processes. Empowered by advances in synthetic biology, this study demonstrates the feasibility and implementation of full humanization of glycolysis in yeast. Single gene and full pathway transplantation revealed the remarkable conservation of glycolytic and moonlighting functions and, combined with evolutionary strategies, brought to light context-dependent responses.

View Article and Find Full Text PDF

Background: In most fungi, quinone-dependent Class-II dihydroorotate dehydrogenases (DHODs) are essential for pyrimidine biosynthesis. Coupling of these Class-II DHODHs to mitochondrial respiration makes their in vivo activity dependent on oxygen availability. Saccharomyces cerevisiae and closely related yeast species harbor a cytosolic Class-I DHOD (Ura1) that uses fumarate as electron acceptor and thereby enables anaerobic pyrimidine synthesis.

View Article and Find Full Text PDF

D-galacturonate, a key constituent of pectin, is a ubiquitous monomer in plant biomass. Anaerobic, fermentative conversion of D-galacturonate is therefore relevant in natural environments as well as in microbial processes for microbial conversion of pectin-containing agricultural residues. In currently known microorganisms that anaerobically ferment D-galacturonate, its catabolism occurs via the galacturonate-isomerase pathway.

View Article and Find Full Text PDF

Efficient production of fuels and chemicals by metabolically engineered micro-organisms requires availability of precursor molecules for product pathways. In eukaryotic cell factories, heterologous product pathways are usually expressed in the cytosol, which may limit availability of precursors that are generated in other cellular compartments. In Saccharomyces cerevisiae, synthesis of the precursor molecule succinyl-Coenzyme A is confined to the mitochondrial matrix.

View Article and Find Full Text PDF

Interspecies hybrids of species are found in a variety of industrial environments and often outperform their parental strains in industrial fermentation processes. Interspecies hybridization is therefore increasingly considered as an approach for improvement and diversification of yeast strains for industrial application. However, current hybridization methods are limited by their reliance on pre-existing or introduced selectable phenotypes.

View Article and Find Full Text PDF

Knowledge on the genetic factors important for the efficient expression of plant transporters in yeast is still very limited. Phaseolus vulgaris sucrose facilitator 1 (PvSuf1), a presumable uniporter, was an essential component in a previously published strategy aimed at increasing ATP yield in Saccharomyces cerevisiae. However, attempts to construct yeast strains in which sucrose metabolism was dependent on PvSUF1 led to slow sucrose uptake.

View Article and Find Full Text PDF

Recent developments in synthetic biology enable one-step implementation of entire metabolic pathways in industrial microorganisms. A similarly radical remodelling of central metabolism could greatly accelerate fundamental and applied research, but is impeded by the mosaic organization of microbial genomes. To eliminate this limitation, we propose and explore the concept of "pathway swapping," using yeast glycolysis as the experimental model.

View Article and Find Full Text PDF

Non-dividing Saccharomyces cerevisiae cultures are highly relevant for fundamental and applied studies. However, cultivation conditions in which non-dividing cells retain substantial metabolic activity are lacking. Unlike stationary-phase (SP) batch cultures, the current experimental paradigm for non-dividing yeast cultures, cultivation under extreme calorie restriction (ECR) in retentostat enables non-dividing yeast cells to retain substantial metabolic activity and to prevent rapid cellular deterioration.

View Article and Find Full Text PDF

Unlabelled: In many eukaryotes, the carnitine shuttle plays a key role in intracellular transport of acyl moieties. Fatty acid-grown Saccharomyces cerevisiae cells employ this shuttle to translocate acetyl units into their mitochondria. Mechanistically, the carnitine shuttle should be reversible, but previous studies indicate that carnitine shuttle-mediated export of mitochondrial acetyl units to the yeast cytosol does not occur in vivo This apparent unidirectionality was investigated by constitutively expressing genes encoding carnitine shuttle-related proteins in an engineered S.

View Article and Find Full Text PDF

Pyruvate and acetyl-coenzyme A, located at the interface between glycolysis and TCA cycle, are important intermediates in yeast metabolism and key precursors for industrially relevant products. Rational engineering of their supply requires knowledge of compensatory reactions that replace predominant pathways when these are inactivated. This study investigates effects of individual and combined mutations that inactivate the mitochondrial pyruvate-dehydrogenase (PDH) complex, extramitochondrial citrate synthase (Cit2) and mitochondrial CoA-transferase (Ach1) in Saccharomyces cerevisiae.

View Article and Find Full Text PDF

The energetic (ATP) cost of biochemical pathways critically determines the maximum yield of metabolites of vital or commercial relevance. Cytosolic acetyl coenzyme A (acetyl-CoA) is a key precursor for biosynthesis in eukaryotes and for many industrially relevant product pathways that have been introduced into Saccharomyces cerevisiae, such as isoprenoids or lipids. In this yeast, synthesis of cytosolic acetyl-CoA via acetyl-CoA synthetase (ACS) involves hydrolysis of ATP to AMP and pyrophosphate.

View Article and Find Full Text PDF

Mixed populations of Saccharomyces cerevisiae yeasts and lactic acid bacteria occur in many dairy, food, and beverage fermentations, but knowledge about their interactions is incomplete. In the present study, interactions between Saccharomyces cerevisiae and Lactobacillus delbrueckii subsp. bulgaricus, two microorganisms that co-occur in kefir fermentations, were studied during anaerobic growth on lactose.

View Article and Find Full Text PDF

Saccharomyces cerevisiae cannot metabolize D-galacturonate, an important monomer of pectin. Use of S. cerevisiae for production of ethanol or other compounds of interest from pectin-rich feedstocks therefore requires introduction of a heterologous pathway for D-galacturonate metabolism.

View Article and Find Full Text PDF

Fusel alcohols are precursors and contributors to flavor and aroma compounds in fermented beverages, and some are under investigation as biofuels. The decarboxylation of 2-oxo acids is a key step in the Ehrlich pathway for fusel alcohol production. In Saccharomyces cerevisiae, five genes share sequence similarity with genes encoding thiamine pyrophosphate-dependent 2-oxo-acid decarboxylases (2ODCs).

View Article and Find Full Text PDF

Industrial production of semi-synthetic cephalosporins by Penicillium chrysogenum requires supplementation of the growth media with the side-chain precursor adipic acid. In glucose-limited chemostat cultures of P. chrysogenum, up to 88% of the consumed adipic acid was not recovered in cephalosporin-related products, but used as an additional carbon and energy source for growth.

View Article and Find Full Text PDF

The widely used drug diclofenac can cause serious heart, liver and kidney injury, which may be related to its ability to cause mitochondrial dysfunction. Using Saccharomyces cerevisiae as a model system, we studied the mechanisms of diclofenac toxicity and the role of mitochondria therein. We found that diclofenac reduced cell growth and viability and increased levels of reactive oxygen species (ROS).

View Article and Find Full Text PDF

To investigate the effect of anaerobiosis on the Saccharomyces cerevisiae mitochondrial proteome and the formation of respiratory chain and other protein complexes, we analyzed mitochondrial protein extracts that were enriched from lysates of aerobic and anaerobic steady-state chemostat cultures. We chose an innovative approach in which native mitochondrial membrane protein complexes were separated by 1-D blue native PAGE, which was combined with quantitative analysis of each complex subunit using stable isotope labeling. LC-FT(ICR)-MS/MS analysis was applied to identify and quantify the mitochondrial proteins.

View Article and Find Full Text PDF

Accumulation of glycogen and trehalose in nutrient-limited cultures of Saccharomyces cerevisiae is negatively correlated with the specific growth rate. Additionally, glucose-excess conditions (i.e.

View Article and Find Full Text PDF

Saccharomyces cerevisiae strains belonging to the CEN.PK family are widely used in fundamental and applied yeast research. These strains have been reported to be hypersensitive to sodium ions and a previous microarray-based genotyping study indicated an atypical organization of the PMR2 locus.

View Article and Find Full Text PDF

Metabolic fluxes may be regulated "hierarchically," e.g., by changes of gene expression that adjust enzyme capacities (V(max)) and/or "metabolically" by interactions of enzymes with substrates, products, or allosteric effectors.

View Article and Find Full Text PDF

The applicability of transcriptomics for functional genome analysis rests on the assumption that global information on gene function can be inferred from transcriptional regulation patterns. This study investigated whether Saccharomyces cerevisiae genes that show a consistently higher transcript level under anaerobic than aerobic conditions do indeed contribute to fitness in the absence of oxygen. Tagged deletion mutants were constructed in 27 S.

View Article and Find Full Text PDF

Growth temperature has a profound impact on the kinetic properties of enzymes in microbial metabolic networks. Activities of glycolytic enzymes in Saccharomyces cerevisiae were up to 7.5-fold lower when assayed at 12 degrees C than at 30 degrees C.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session90vh6dnl9jbc3tf2g2aebih34053a7lj): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once