Publications by authors named "Marija Usenovic"

ApoEε4 is a major genetic risk factor for Alzheimer's disease (AD), a disease hallmarked by extracellular amyloid-beta (Aβ) plaques and intracellular neurofibrillary tangles (NFTs). The presence of the ApoEε4 allele is associated with increased Aβ deposition and a role for ApoEε4 in the potentiation of tau pathology has recently emerged. This study focused on comparing the effects of adeno-associated virus (AAV)-mediated overexpression of the three predominant human ApoE isoforms within astrocytes.

View Article and Find Full Text PDF

Objective: To examine whether gene expression analysis of a large-scale Parkinson disease (PD) patient cohort produces a robust blood-based PD gene signature compared to previous studies that have used relatively small cohorts (≤220 samples).

Methods: Whole-blood gene expression profiles were collected from a total of 523 individuals. After preprocessing, the data contained 486 gene profiles (n = 205 PD, n = 233 controls, n = 48 other neurodegenerative diseases) that were partitioned into training, validation, and independent test cohorts to identify and validate a gene signature.

View Article and Find Full Text PDF

Unlabelled: Neuronal inclusions of hyperphosphorylated and aggregated tau protein are a pathological hallmark of several neurodegenerative tauopathies, including Alzheimer's disease (AD). The hypothesis of tau transmission in AD has emerged from histopathological studies of the spatial and temporal progression of tau pathology in postmortem patient brains. Increasing evidence in cellular and animal models supports the phenomenon of intercellular spreading of tau.

View Article and Find Full Text PDF

mTOR is activated in epilepsy, but the mechanisms of mTOR activation in post-traumatic epileptogenesis are unknown. It is also not clear whether mTOR inhibition has an anti-epileptogenic, or merely anticonvulsive effect. The rat hippocampal organotypic culture model of post-traumatic epilepsy was used to study the effects of long-term (four weeks) inhibition of signaling pathways that interact with mTOR.

View Article and Find Full Text PDF

Lysosomes are responsible for degradation and recycling of bulky cell material, including accumulated misfolded proteins and dysfunctional organelles. Increasing evidence implicates lysosomal dysfunction in several neurodegenerative disorders, including Parkinson's disease and related synucleinopathies, which are characterized by the accumulation of α-synuclein (α-syn) in Lewy bodies. Studies of lysosomal proteins linked to neurodegenerative disorders present an opportunity to uncover specific molecular mechanisms and pathways that contribute to neurodegeneration.

View Article and Find Full Text PDF

Neuronal homeostasis and survival critically depend on an efficient autophagy-lysosomal degradation pathway, especially since neurons cannot reduce the concentration of misfolded proteins and damaged organelles by cell division. While increasing evidence implicates lysosomal dysfunction in the pathogenesis of neurodegenerative disorders, the molecular underpinnings of the role of lysosomes in neurodegeneration remain largely unknown. To this end, studies of neurodegenerative disorders caused by mutations in lysosomal proteins offer an opportunity to elucidate such mechanisms and potentially identify specific therapeutic targets.

View Article and Find Full Text PDF

The autophagy-lysosomal pathway plays an important role in the clearance of long-lived proteins and dysfunctional organelles. Lysosomal dysfunction has been implicated in several neurodegenerative disorders including Parkinson's disease and related synucleinopathies that are characterized by accumulations of α-synuclein in Lewy bodies. Recent identification of mutations in genes linked to lysosomal function and neurodegeneration has offered a unique opportunity to directly examine the role of lysosomes in disease pathogenesis.

View Article and Find Full Text PDF