In contrast to the classical visual brain-computer interface (BCI) paradigms, which adhere to a rigid trial structure and restricted user behavior, electroencephalogram (EEG)-based visual recognition decoding during our daily activities remains challenging. The objective of this study is to explore the feasibility of decoding the EEG signature of visual recognition in experimental conditions promoting our natural ocular behavior when interacting with our dynamic environment.In our experiment, subjects visually search for a target object among suddenly appearing objects in the environment while driving a car-simulator.
View Article and Find Full Text PDFObjective: Event Related Potentials (ERPs) reflecting cognitive response to external stimuli, are widely used in brain computer interfaces. ERP waveforms are characterized by a series of components of particular latency and amplitude. The classical ERP decoding methods exploit this waveform characteristic and thus achieve a high performance only if there is sufficient time- and phase-locking across trials.
View Article and Find Full Text PDFThe combined effect of fundamental results about neurocognitive processes and advancements in decoding mental states from ongoing brain signals has brought forth a whole range of potential neurotechnological applications. In this article, we review our developments in this area and put them into perspective. These examples cover a wide range of maturity levels with respect to their applicability.
View Article and Find Full Text PDFObjective: State-of-the-art experiments for studying neural processes underlying visual cognition often constrain sensory inputs (e.g., static images) and our behavior (e.
View Article and Find Full Text PDFWe revisit the framework for brain-coupled image search, where the Electroencephalography (EEG) channel under rapid serial visual presentation protocol is used to detect user preferences. Extending previous works on the synergy between content-based image labeling and EEG-based brain-computer interface (BCI), we propose a different perspective on iterative coupling. Previously, the iterations were used to improve the set of EEG-based image labels before propagating them to the unseen images for the final retrieval.
View Article and Find Full Text PDF