This work presents the natural radioactivity distribution of 21 surface soil samples taken in the city of Novi Sad, Serbia. The analysis for radioactivity was performed using a gas low-level proportional counter for gross alpha and gross beta activity, while the specific activities of radionuclides were determined using HPGe detectors. The gross alpha activity of 20 samples was below the minimum detectable concentration (MDC), while in 1 sample it was 243 Bq kg; the gross beta activity ranged from the MDC (11 samples) to 566 Bq kg.
View Article and Find Full Text PDFA novel approach for rapid Sr determination in seawater samples is developed. For the first time in the radioanalytical application, the features of the synthetic zeolite Z4A and a highly selective material for Sr separation were synergically employed. Seawater composition significantly reduces Sr yield on highly selective solid-phase extraction materials, making the preconcentration step essentially important but laborious and time-consuming.
View Article and Find Full Text PDFThe efficient, selective, and economical sorbents for the removal of Sr radionuclides are largely needed for the decontamination of effluents with high salinity. In this study, the removal of Sr was investigated using the zeolite produced from the Bayer process liquids. Based on the XRD, SEM/EDS analysis, the product was pure and highly crystalline zeolite 4A (Z4A).
View Article and Find Full Text PDFAs soil cadmium (Cd) contamination becomes a serious concern and one of the significant environmental pollution issues all over the world, knowledge of the basic chemistry, origin, inputs, sources, quantity, chemical forms, reactions, as well as the fate and transport of Cd in different types of soil is crucial for better understanding Cd bioavailability, health risks and remedial options. This study aimed to increase the current knowledge on the complex interdependence between the factors affecting behavior, transport and fate of Cd in the soil and to test and compare the performance of the stabilization agents in different soil types. Soils demonstrated various sorption affinity and capacity for Cd accumulation, which proved to be positively correlated with soil pH and the cation exchange capacity (CEC).
View Article and Find Full Text PDFJ Environ Sci Health A Tox Hazard Subst Environ Eng
March 2018
The objective of the present study was to determine the impact of cadmium (Cd) concentration in the soil on its uptake by tobacco plants, and to compare the ability of diverse extraction procedures for determining Cd bioavailability and predicting soil-to-plant transfer and Cd plant concentrations. The pseudo-total digestion procedure, modified Tessier sequential extraction and six standard single-extraction tests for estimation of metal mobility and bioavailability were used for the leaching of Cd from a native soil, as well as samples artificially contaminated over a wide range of Cd concentrations. The results of various leaching tests were compared between each other, as well as with the amounts of Cd taken up by tobacco plants in pot experiments.
View Article and Find Full Text PDFJ Environ Sci Health A Tox Hazard Subst Environ Eng
July 2016
The prospects of rinsed red mud (alumina production residue) utilization for liquid radioactive waste treatment have been investigated, with Co(2+) and Sr(2+) as model cations of radioactive elements. To evaluate the sorption effectiveness and corresponding binding mechanisms, the process was analyzed in batch conditions, by varying experimental conditions (pH, Co(2+) and Sr(2+) concentrations in single solutions and binary mixtures, contact time, and the concentration of competing cations and ligands common in liquid radioactive waste). Comparison of the Co(2+) and Sr(2+) sorption pH edges with the red mud isoelectric point has revealed that Co(2+) removal took place at both positive and negative red mud surface, while Sr(2+) sorption abruptly increased when the surface became negatively charged.
View Article and Find Full Text PDFJ Environ Sci Health A Tox Hazard Subst Environ Eng
July 2012
Experimental design methodology was applied for evaluation of factors influencing Co(2+) sorption by thermally treated bovine bones. The major aim of this study was to determine factors which affect process the most, as well as their mutual interactions, in order to select conditions that provide maximum sorbent loading. Five process variables (sorbent mass, sorbate concentration, contact time, initial pH and agitation speed) were examined by full factorial design at two levels.
View Article and Find Full Text PDFJ Environ Sci Health A Tox Hazard Subst Environ Eng
January 2012
Bone char powder, composed mainly of poorly crystalline hydroxyapatite (Ca(10)(PO(4))(6)(OH)(2)), carbon and CaCO(3), has potential applicability in the removal of Co(2+) ions from contaminated effluents. In the present study, the influence of process parameters: particle size, agitation speed, initial pH and initial sorbate concentration, onto kinetics and mechanism of Co(2+)sorption was studied and discussed. In order to describe and compare time evolution of the process under different conditions, the experimental data were analyzed using pseudo-first, pseudo-second and Vermeulen's kinetic models.
View Article and Find Full Text PDF