Nucleoside analogues have excellent records as anti-HBV drugs. Chronic infections require long-term administration ultimately leading to drug resistance. Therefore, the search for nucleosides with novel scaffolds is of high importance.
View Article and Find Full Text PDFChronic hepatitis C (CHC) is a major liver disease caused by the hepatitis C virus. The current standard of care for CHC can achieve cure rates above 95%; however, the drugs in current use are administered for a period of 8-16 weeks. A combination of safe and effective drugs with a shorter treatment period is highly desirable.
View Article and Find Full Text PDFALS-8112 is the parent molecule of ALS-8176, a first-in-class nucleoside analog prodrug effective in the clinic against respiratory syncytial virus (RSV) infection. The antiviral activity of ALS-8112 is mediated by its 5'-triphosphate metabolite (ALS-8112-TP, or 2'F-4'ClCH2-cytidine triphosphate) inhibiting the RNA polymerase activity of the RSV L-P protein complex through RNA chain termination. Four amino acid mutations in the RNA-dependent RNA polymerase (RdRp) domain of L (QUAD: M628L, A789V, L795I, and I796V) confer in vitro resistance to ALS-8112-TP by increasing its discrimination relative to natural CTP.
View Article and Find Full Text PDFInfluenza viruses are responsible for seasonal epidemics and occasional pandemics which cause significant morbidity and mortality. Despite available vaccines, only partial protection is achieved. Currently, there are two classes of widely approved anti-influenza drugs: M2 ion channel blockers and neuraminidase inhibitors.
View Article and Find Full Text PDFRespiratory syncytial virus (RSV) causes severe lower respiratory tract infections, yet no vaccines or effective therapeutics are available. ALS-8176 is a first-in-class nucleoside analog prodrug effective in RSV-infected adult volunteers, and currently under evaluation in hospitalized infants. Here, we report the mechanism of inhibition and selectivity of ALS-8176 and its parent ALS-8112.
View Article and Find Full Text PDFRespiratory syncytial virus (RSV) is a leading pathogen of childhood and is associated with significant morbidity and mortality. To date, ribavirin is the only approved small molecule drug, which has limited use. The only other RSV drug is palivizumab, a monoclonal antibody, which is used for RSV prophylaxis.
View Article and Find Full Text PDFIn our search for improved therapeutic agents against HCV we synthesized 7-deaza-7-ethynyl-2'-C-methyladenosine (1) and its 2'-deoxy-2'-fluoro analogue 2. The corresponding nucleoside triphosphates were efficient chain terminators of the HCV NS5b polymerase with IC(50)'s of 0.75 microM and 0.
View Article and Find Full Text PDFNucleosides Nucleotides Nucleic Acids
March 2006
Nucleoside reverse transcriptase inhibitors (NRTIs) are prodrugs which require three intracellular phosphorylation steps to yield their corresponding, biologically active, nucleoside triphosphate. In order to circumvent this often inefficient phosphorylation cascade, a plausible approach is to provide the active species directly in the form of a stabilized nucleoside triphosphate mimic. We have previously shown that such a mimic, namely 5'-alpha-Rp-borano-beta,gamma-(difluoromethylene)triphosphate (5'-alphaBCF2TP) is a generic triphosphate mimic that is biologically stable and can render antiviral ddNs with potent inhibitory activity against HIV-1 RT.
View Article and Find Full Text PDF3'-Azido-3',5-dideoxythymidine 5'-phosphonate and 3',5'-dideoxy-5'-difluoromethylenethymidine 5'-phosphonate were prepared by multistep syntheses. The nucleoside 5'-phosphonates were converted to their triphosphates and triphosphate mimics (P3Ms) containing beta,gamma-difluoromethylene, beta,gamma-dichloromethylene, or beta,gamma-imodo by condensation with pyrophosphate or pyrophosphate mimics, respectively. Inhibition of HIV-1 reverse transcriptase by the nucleoside P3Ms is briefly discussed.
View Article and Find Full Text PDFThe triphosphates of antiviral 2',3'-dideoxynucleosides (ddNs) are the active chemical species that inhibit viral DNA synthesis. The inhibition involves incorporation of ddNMP into DNA and subsequent chain termination. A conceivable strategy for antiviral drugs is to employ nucleoside 5'-triphosphate mimics that can entirely bypass cellular phosphorylation.
View Article and Find Full Text PDFSeveral triphosphates of modified nucleosides (1-6) were identified as inhibitors (IC(50) = 0.08-3.8 microM) of hepatitis C virus RNA-dependent RNA polymerase (RdRp).
View Article and Find Full Text PDFIn search of active nucleoside 5'-triphosphate mimics, we have synthesized a series of AZT triphosphate mimics (AZT P3Ms) and evaluated their inhibitory effects on HIV-1 reverse transcriptase as well as their stability in fetal calf serum and in CEM cell extracts. Reaction of AZT with 2-chloro-4H-1,3,2-benzodioxaphosphorin-4-one, followed by treatment of the phosphite intermediate 2 with pyrophosphate analogues, yielded the cyclic triphosphate intermediates 4b-4f, which were subjected to boronation and subsequent hydrolysis to give AZT 5'-alpha-borano-beta,gamma-bridge-modified triphosphates 6b-6f in moderate to good yields. Reaction of the cyclic intermediate 4d with iodine, followed by treatment with a series of nucleophiles, afforded the AZT 5'-beta,gamma-difluoromethylene-gamma-substituted triphosphates (7b-7i).
View Article and Find Full Text PDFChemical modification of nucleic acids at the 2'-position of ribose has generated antisense oligonucleotides (AONs) with a range of desirable properties. Electron-withdrawing substituents such as 2'-O-[2-(methoxy)ethyl] (MOE) confer enhanced RNA affinity relative to that of DNA by conformationally preorganizing an AON for pairing with the RNA target and by improving backbone hydration. 2'-Substitution of the ribose has also been shown to increase nuclease resistance and cellular uptake via changes in lipophilicity.
View Article and Find Full Text PDFHepatitis C virus infection constitutes a significant health problem in need of more effective therapies. We have recently identified 2'-C-methyladenosine and 2'-C-methylguanosine as potent nucleoside inhibitors of HCV RNA replication in vitro. However, both of these compounds suffered from significant limitations.
View Article and Find Full Text PDFImproved treatments for chronic hepatitis C virus (HCV) infection are needed due to the suboptimal response rates and deleterious side effects associated with current treatment options. The triphosphates of 2'-C-methyl-adenosine and 2'-C-methyl-guanosine were previously shown to be potent inhibitors of the HCV RNA-dependent RNA polymerase (RdRp) that is responsible for the replication of viral RNA in cells. Here we demonstrate that the inclusion of a 7-deaza modification in a series of purine nucleoside triphosphates results in an increase in inhibitory potency against the HCV RdRp and improved pharmacokinetic properties.
View Article and Find Full Text PDFAs part of a continued effort to identify inhibitors of hepatitis C viral (HCV) replication, we report here the synthesis and evaluation of a series of nucleoside analogues and their corresponding triphosphates. Nucleosides were evaluated for their ability to inhibit HCV RNA replication in a cell-based, subgenomic replicon system, while nucleoside triphosphates were evaluated for their ability to inhibit in vitro RNA synthesis mediated by the HCV RNA-dependent RNA polymerase, NS5B. 2'-C-Methyladenosine and 2'-C-methylguanosine were identified as potent inhibitors of HCV RNA replication, and the corresponding triphosphates were found to be potent inhibitors of HCV NS5B-mediated RNA synthesis.
View Article and Find Full Text PDF[structure: see text] Oligonucleotides with a novel, 2'-O-[2-[2-(N,N-dimethylamino)ethoxy]ethyl] (2'-O-DMAEOE) modification have been synthesized. This modification, a cationic analogue of the 2'-O-(2-methoxyethyl) (2'-O-MOE) modification, exhibits high binding affinity to target RNA (but not to DNA) and exceptional resistance to nuclease degradation. Analysis of the crystal structure of a self-complementary oligonucleotide containing a single 2'-O-DMAEOE modification explains the importance of charge factors and gauche effects on the observed antisense properties.
View Article and Find Full Text PDF