This study investigates the feasibility of a novel brain-computer interface (BCI) device designed for sensory training following stroke. The BCI system administers electrotactile stimuli to the user's forearm, mirroring classical sensory training interventions. Concurrently, selective attention tasks are employed to modulate electrophysiological brain responses (somatosensory event-related potentials-sERPs), reflecting cortical excitability in related sensorimotor areas.
View Article and Find Full Text PDFTactile attention tasks are used in the diagnosis and treatment of neurological and sensory processing disorders, while somatosensory event-related potentials (ERP) measured by electroencephalography (EEG) are used as neural correlates of attention processes. Brain-computer interface (BCI) technology provides an opportunity for the training of mental task execution via providing online feedback based on ERP measures. Our recent work introduced a novel electrotactile BCI for sensory training, based on somatosensory ERP; however, no previous studies have addressed specific somatosensory ERP morphological features as measures of sustained endogenous spatial tactile attention in the context of BCI control.
View Article and Find Full Text PDFObjective: A brain computer interface (BCI) allows users to control external devices using non-invasive brain recordings, such as electroencephalography (EEG). We developed and tested a novel electrotactile BCI prototype based on somatosensory event-related potentials (sERP) as control signals, paired with a tactile attention task as a control paradigm.
Approach: A novel electrotactile BCI comprises commercial EEG device, an electrical stimulator and custom software for EEG recordings, electrical stimulation control, synchronization between devices, signal processing, feature extraction, selection, and classification.