Publications by authors named "Marija Mioc"

Epithelial-to-mesenchymal transition (EMT) gives rise to cells with properties similar to cancer stem cells (CSCs). Targeting the EMT program to selectively eliminate CSCs is a promising way to improve cancer therapy. Salinomycin (Sal), a K+/H+ ionophore, was identified as highly selective towards CSC-like cells, but its mechanism of action and selectivity remains elusive.

View Article and Find Full Text PDF

Cancer and malaria are both global health threats. Due to the increase in the resistance to the known drugs, research on new active substances is a priority. Here, we present the design, synthesis, and evaluation of the biological activity of harmicens, hybrids composed of covalently bound harmine/β-carboline and ferrocene scaffolds.

View Article and Find Full Text PDF

Overexpression of ABC transporters, such as ABCB1 and ABCG2, plays an important role in mediating multidrug resistance (MDR) in cancer. This feature is also attributed to a subpopulation of cancer stem cells (CSCs), having enhanced tumourigenic potential. ABCG2 is specifically associated with the CSC phenotype, making it a valuable target for eliminating aggressive and resistant cells.

View Article and Find Full Text PDF

As a result of our previous research focussed on benzimidazoles, herein we present design, synthesis, QSAR analysis and biological activity of novel N-substituted benzimidazole derived carboxamides. Carboxamides were designed to study the influence of the number of methoxy groups, the type of the substituent placed at the benzimidazole core on biological activity. Pronounced antioxidative activity displayed unsubstituted (IC ≈ 3.

View Article and Find Full Text PDF

A novel series of tetracyclic imidazo[4,5-b]pyridine derivatives was designed and synthesized as potential antiproliferative agents. Their antiproliferative activity against human cancer cells was influenced by the introduction of chosen amino side chains on the different positions on the tetracyclic skeleton and particularly, by the position of N atom in the pyridine nuclei. Thus, the majority of compounds showed improved activity in comparison to standard drug etoposide.

View Article and Find Full Text PDF

The three series of 5-mono- and 2,5-bis-1,2,3-triazolyl-substituted benzimidazo[1,2-a]quinolines as potential antitumor agents were synthesized. Their growth-inhibitory activity is influenced by the introduction of fluorine at C-2 and the mono-triazolyl nuclei at C-5 of the tetracyclic skeleton, particularly if the 1,2,3-triazole moiety contains a short aliphatic side-chain. Thus, the chloropropyl side-chain in all three series had the highest impact on the inhibitory effect.

View Article and Find Full Text PDF

We present the synthesis of a range of benzimidazole/benzothiazole-2-carboxamides with a variable number of methoxy and hydroxy groups, substituted with nitro, amino, or amino protonated moieties, which were evaluated for their antiproliferative activity in vitro and the antioxidant capacity. Antiproliferative features were tested on three human cancer cells, while the antioxidative activity was measured using 1,1-diphenyl-picrylhydrazyl (DPPH) free radical scavenging and ferric reducing antioxidant power (FRAP) assays. Trimethoxy substituted benzimidazole-2-carboxamide showed the most promising antiproliferative activity (IC = 0.

View Article and Find Full Text PDF

Multidrug resistance (MDR) is a widespread phenomenon exhibited by many cancers and represents a fundamental obstacle for successful cancer treatments. Tumour cells commonly achieve MDR phenotype through overexpression and/or increased activity of ABC transporters. P-glycoprotein transporter (P-gp, ABCB1) is a major cause of MDR and therefore represents a valuable target for MDR reversal.

View Article and Find Full Text PDF