Publications by authors named "Marija Gizdavic-Nikolaidis"

The potential application of colloidal polyaniline (PANI) as an antimicrobial is limited by challenges related to solubility in common organic solvents, scalability, and antimicrobial potency. To address these limitations, we introduced a functionalized PANI (fPANI) with carboxyl groups through the polymerisation of aniline and 3-aminobenzoic acid in a 1:1 molar ratio. fPANI is more soluble than PANI which was determined using a qualitative study.

View Article and Find Full Text PDF

The aim of this work was to extract phenolic compounds from Chardonnay grape marc employing a microwave-assisted extraction (MAE). Firstly, the effect of solvent concentration (30-60%), solid mass (1.0-2.

View Article and Find Full Text PDF

Polyaniline (PANI) and functionalised polyanilines (fPANI) are novel antimicrobial agents whose mechanism of action was investigated. single gene deletion mutants revealed that the antimicrobial mechanism of PANI likely involves production of hydrogen peroxide while homopolymer poly(3-aminobenzoic acid), P3ABA, used as an example of a fPANI, disrupts metabolic and respiratory machinery, by targeting ATP synthase and causes acid stress. PANI was more active against in aerobic, compared to anaerobic, conditions, while this was apparent for P3ABA only in rich media.

View Article and Find Full Text PDF
Article Synopsis
  • - Antimicrobial surfaces, using compounds like Polyaniline (PANI) and poly(3-aminobenzoic acid) (P3ABA), can help reduce infection spread in hospitals by preventing bacteria from adhering to surfaces.
  • - The study tested how effective PANI and P3ABA are in killing bacteria in different conditions, including suspension and on both absorbent and non-absorbent surfaces.
  • - Findings indicated that both PANI and P3ABA are effective against certain bacteria, with P3ABA showing the strongest potential for creating surfaces that resist contamination without losing effectiveness over time.
View Article and Find Full Text PDF

Tuberculosis is considered a leading cause of death worldwide. More than 95% of cases and deaths occur in low- and middle-income countries. In resource-limited countries, hospitals often lack adequate facilities to manage and isolate patients with infectious tuberculosis (TB), relying instead on personal protective equipment, such as facemasks, to reduce nosocomial transmission of the disease.

View Article and Find Full Text PDF

The purpose of the present study was to investigate the antimicrobial effects of functionalized polyanilines (fPANIs) against stationary phase cells and biofilms of Pseudomonas aeruginosa and Staphylococcus aureus using homopolymer of sulfanilic acid (poly-SO3H) as a model. The chemically synthesized poly-SO3H was characterized using Fourier Transform Infra-Red (FTIR) and Ultraviolet-Visible (UV-Vis) spectroscopies. The molecular weight (Mw) and elemental analysis of homopolymer poly-SO3H were also examined.

View Article and Find Full Text PDF
Article Synopsis
  • * Heat curing at 150 °C for 24 hours altered the properties of the fiber mats based on the amount of gallic acid used, including a slower release rate of gallic acid.
  • * This research suggests that heat-cured zein-based fibers may be useful for food packaging applications due to their improved molecular structure and properties after treatment.
View Article and Find Full Text PDF

The applicability of gallic acid loaded zein (Ze-GA) electrospun fibre mats towards potential active food packaging material was evaluated. The surface chemistry of the electrospun fibre mats was determined using X-ray photon spectroscopy (XPS). The electrospun fibre mats showed low water activity and whitish colour.

View Article and Find Full Text PDF

Gallic acid was successfully incorporated into zein ultra-fine fibres at different loading amount (5%, 10% and 20%) in order to develop an encapsulating technology for functional ingredient delivery using electrospinning. The produced fibres exhibit diameters ranging from 327 to 387 nm. The physical and thermal properties of encapsulated gallic acid were determined by X-ray diffraction (XRD) and differential scanning calorimetry (DSC); and the interaction between gallic acid and zein was attested by attenuated total reflection-Fourier transform infrared (ATR-FTIR).

View Article and Find Full Text PDF

The antimicrobial properties of conductive functionalized polyanilines (fPANI) were investigated by exploring their interaction with bacterial cells. In sharp contrast to polyaniline (PANI), lower concentrations of fPANI were needed to strongly inhibit the growth of wild-type Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus, as well as several antibiotic-resistant clinical pathogens. To gain an insight into how fPANI have an impact on cellular physiology we used a whole genome expression study in the model E.

View Article and Find Full Text PDF

We present the first fast and facile microwave assisted synthesis of polyaniline (PANI) nanofibers ("MWA synthesis"). Under conventional synthesis (CS), the polymer was produced with 79.7% yield after 5 h at ambient temperature.

View Article and Find Full Text PDF

Nanofibrous blends of HCl-doped poly(aniline-co-3-aminobenzoic acid) (3ABAPANI) copolymer and poly(lactic acid) (PLA) were fabricated by electrospinning solutions of the polymers, in varying relative proportions, in dimethyl sulfoxide/tetrahydrofuran mixture. The morphology, mechanical and electrical properties of the nanofibers were characterized and an assessment of their bioactivity performed. To assess cell morphology and biocompatibility, pure PLA and 3ABAPANI-PLA nanofibrous mats were deposited in the form of three-dimensional networks with a high degree of connectivity, on glass substrates, and their ability to promote proliferation of COS-1 fibroblast cells was determined.

View Article and Find Full Text PDF