Nanotechnology has the potential to provide formulations of antitumor agents with increased selectivity towards cancer tissue thereby decreasing systemic toxicity. This study evaluated the potential of novel nanoformulation based on poly(lactic--glycolic acid) (PLGA) to reduce the cardiotoxic potential of doxorubicin (DOX). toxicity of PLGADOX was compared with clinically approved non-PEGylated, liposomal nanoformulation of DOX (LipoDOX) and conventional DOX form (ConvDOX).
View Article and Find Full Text PDFThe precipitation of calcium phosphates (CaPs) in the presence of more than one type of additive is of interest both from a fundamental point of view and as a possible biomimetic route for the preparation of multicomponent composites in which the activity of the components is preserved. In this study, the effect of bovine serum albumin (BSA) and chitosan (Chi) on the precipitation of CaPs in the presence of silver nanoparticles (AgNPs) stabilized with sodium bis(2-ethylhexyl)sulfosuccinate (AOT-AgNPs), poly(vinylpyrrolidone) (PVP-AgNPs), and citrate (cit-AgNPs) was investigated. In the control system, the precipitation of CaPs occurred in two steps.
View Article and Find Full Text PDFCalcium phosphates (CaPs) composites with silver nanoparticles (AgNPs) attract attention as a possible alternative to conventional approaches to combating orthopedic implant-associated infections. Although precipitation of calcium phosphates at room temperatures was pointed out as an advantageous method for the preparation of various CaP-based biomaterials, to the best of our knowledge, no such study exists for the preparation of CaPs/AgNP composites. Motivated by this lack of data in this study we investigated the influence of AgNPs stabilized with citrate (cit-AgNPs), poly(vinylpyrrolidone) (PVP-AgNPs), and sodium bis(2-ethylhexyl) sulfosuccinate (AOT-AgNPs) in the concentration range 5-25 mg dm on the precipitation of CaPs.
View Article and Find Full Text PDFAdministration of cytotoxic agents like doxorubicin (DOX) is restrained by the effects on different non-targeted/non-cancerous tissues, which instigates the development of nano-enabled drug delivery systems, among others. In this study, imaging mass spectrometry (IMS) was selected to examine the effects of DOX nanoformulations on non-targeted tissues. Chemical alterations induced by liposomal (LPS) and poly (lactic--glycolic acid) (PLG) nanoformulations were assessed against the ones induced by the conventional (CNV) formulation.
View Article and Find Full Text PDFSilver nanoparticles (AgNPs) are among the most commercialized nanomaterials in biomedicine due to their antimicrobial and anti-inflammatory properties. Nevertheless, possible health hazards of exposure to AgNPs are yet to be understood and therefore raise public concern in regards of their safety. In this study, sex-related differences, role of steroidal hormones and influence of two different surface stabilizing agents (polymer vs.
View Article and Find Full Text PDFBackground: Silver nanoparticles (AgNPs) are widely used in biomedicine due to their strong antimicrobial, antifungal, and antiviral activities. Concerns about their possible negative impacts on human and environmental health directed many researchers towards the assessment of the safety and toxicity of AgNPs in both in vitro and in vivo settings. A growing body of scientific information confirms that the biodistribution of AgNPs and their toxic effects vary depending on the particle size, coating, and dose as well as on the route of administration and duration of exposure.
View Article and Find Full Text PDFDespite increasing use of silver nanoparticles (AgNPs) in different medicinal products, knowledge about their effects on hemostasis and platelets functionality is still scarce. Published scientific reports provide neither data on oxidative stress response of platelets to AgNPs nor information about the effects of AgNPs physicochemical properties on functionality and activation of platelets. This study aimed to explore the role of AgNPs surface functionalization on cell viability, particle uptake, oxidative stress response, and activation of platelets.
View Article and Find Full Text PDFThe exploitation of silver nanoparticles (AgNPs) in biomedicine represents more than one third of their overall application. Despite their wide use and significant amount of scientific data on their effects on biological systems, detailed insight into their in vivo fate is still lacking. This study aimed to elucidate the biotransformation patterns of AgNPs following oral administration.
View Article and Find Full Text PDFThe constantly growing need for advanced bone regeneration materials has motivated the development of calcium phosphates (CaPs) composites with a different metal or metal-oxide nanomaterials and their economical and environmentally friendly production. Here, two procedures for the synthesis of CaPs composites with TiO nanoplates (TiNPl) and nanowires (TiNWs) were tested, with the immersion of TiO nanomaterials (TiNMs) in corrected simulated body fluid (c-SBF) and precipitation of CaP in the presence of TiNMs. The materials obtained were analyzed by powder X-ray diffraction, spectroscopic and microscopic techniques, Brunauer-Emmett-Teller surface area analysis, thermogravimetric analysis, dynamic and electrophoretic light scattering, and their hemocompatibility and ability to induce reactive oxygen species were evaluated.
View Article and Find Full Text PDFMetallic nanoparticles are an important and widely used materials in development of nano-enabled medicine. For that reason, their interaction with biological molecules has to be systematically examined, as use of nanoparticles can lead to altered biological functions. In this study, we evaluated the interaction between silver nanoparticles (AgNPs) and two important plasma transport proteins - albumin and α-1-acid glycoprotein.
View Article and Find Full Text PDFis a highly virulent intracellular pathogen that proliferates within various cell types and can infect a multitude of animal species. escapes the phagosome rapidly after infection and reaches the host cell cytosol where bacteria undergo extensive replication. Once cytosolic, becomes a target of an autophagy-mediated process.
View Article and Find Full Text PDFis a highly infectious, intracellular bacterium and it is the causative agent of tularemia. The bacterium has been isolated from more than 250 species, including protozoa. Previous studies have shown that the growth of within the amoeba results in a dramatic increase in the resistance to disinfectants.
View Article and Find Full Text PDFSilver nanoparticles (AgNPs) represent one of the most abundant biocidal nanomaterials contained in more than 30% of nano-enabled consumer products and 75% of nanomedical products. The cumulative exposure of the general population may therefore reach critical and potentially hazardous levels. Due to data gaps on AgNP effects in humans, it is urgent to further evaluate their possible toxicity, particularly in vulnerable systems like the nervous one.
View Article and Find Full Text PDFPhase transitions in mixtures of imidazolium based ionic liquid ([Cmim]Br) and anionic double tail surfactant, sodium bis(2-ethylhexyl) sulfosuccinate (AOT), were studied using a multitechnique approach. The system was primarily chosen for its expected ability to form a variety of lamellar and nonlamellar liquid crystalline phases which can transform into each other via different mechanisms. Depending on the bulk composition and total surfactant concentration, mixed micelles, coacervates, and lamellar and inverse bicontinuous cubic liquid crystalline phase were observed.
View Article and Find Full Text PDFSilver (AgNPs) and maghemite, i.e., superparamagnetic iron oxide nanoparticles (SPIONs) are promising candidates for new medical applications, which implies the need for strict information regarding their physicochemical characteristics and behavior in a biological environment.
View Article and Find Full Text PDFSTAM2 (signal transducing adaptor molecule 2), a subunit of the ESCRT-0 complex, is an endosomal protein acting as a regulator of receptor signaling and trafficking. To analyze STAM2 in the nervous system, its gene expression and protein localization in the mouse brain were identified using three methods: mRNA in situ hybridization, immunohistochemistry, and via lacZ reporter in frame with Stam2 gene using the gene trap mouse line Stam2(Gt1Gaj). STAM2 intracellular localization was analyzed by subcellular fractionation and co-immunofluorescence using confocal microscopy.
View Article and Find Full Text PDFKrüppel-like transcription factor 8 (KLF8) is a transcription factor suggested to be involved in various cellular events, including malignant cell transformation, still its expression in the adult rodent brain remained unknown. To analyze Klf8 in the mouse brain and to identify cell types expressing it, a specific transgenic Klf8(Gt1Gaj) mouse was used. The resulting Klf8 gene-driven β-galactosidase activity was visualized by X-gal histochemical staining of the brain sections.
View Article and Find Full Text PDFSporadic Alzheimer's disease (sAD) is the most common form of dementia. Rats injected intracerebroventricularly with streptozotocin (STZ-icv) develop insulin-resistant brain state and represent a non-transgenic sAD model with a number of AD-like cognitive and neurochemical features. We explored cognitive, structural and ultrastructural changes in the brain of the STZ-icv rat model over a course of 9 months.
View Article and Find Full Text PDFScientific information on the potential harmful effects of silver nanoparticles (AgNPs) on human health severely lags behind their exponentially growing applications in consumer products. In assessing the toxic risk of AgNP usage, liver, as a detoxifying organ, is particularly important. The aim of this study was to explore the toxicity mechanisms of nano and ionic forms of silver on human hepatoblastoma (HepG2) cells.
View Article and Find Full Text PDFJ Agric Food Chem
August 2014
The impact of a cationic surfactant, dodecylammonium chloride (DDACl), on the self-assembly of sodium caseinate (SC) has been investigated by light scattering, zeta potential, and rheological measurements as well as by microscopy (transmission electron and confocal laser scanning microscopy). In SC dilute solutions concentration-dependent self-assembly proceeds through the formation of spherical associates and their aggregation into elongated structures composed of connected spheres. DDACl interacts with SC via its hydrophilic and hydrophobic groups, inducing changes in SC self-assembled structures.
View Article and Find Full Text PDFFront Biosci (Schol Ed)
January 2013
Structure of human cervical mucus plays a pivotal role in female fertility and protection of reproductive health. Investigation of biochemical and biophysical structure of cervical mucus remains a challenge due to complex structural proteins, high content of oligosaccharides and cyclic variability of its structure. We present the current knowledge on chemical and biophysical features of cervical mucus and regulation of its secretion, relevant clinical observations and underexplored elements.
View Article and Find Full Text PDFThe FOXP2 gene is required for normal development of speech and language. By isolating and sequencing FOXP2 genomic DNA fragments from a 49,000-year-old Iberian Neandertal and 50 present-day humans, we have identified substitutions in the gene shared by all or nearly all present-day humans but absent or polymorphic in Neandertals. One such substitution is localized in intron 8 and affects a binding site for the transcription factor POU3F2, which is highly conserved among vertebrates.
View Article and Find Full Text PDFSTAM2 is a tyrosine-phosphorylated protein suggested to be involved in cargo selection during endocytic pathway, regulation of exocytosis and intracellular signaling. Gene trap method was used to create via insertional mutagenesis a mutant mouse line with integration of promoterless βgeo (lacZ-neomycin phosphotransferase fusion) gene in the second intron of Stam2 gene, enabling analysis of its in vivo expression and function. The inserted β-galactosidase (lacZ) reporter gene was used to reveal Stam2 expression during development.
View Article and Find Full Text PDFSignal transducing adaptor molecule 2 (STAM2) is a phosphotyrosine protein, which is a member of the endosomal sorting complex required for transport (ESCRT-0) and is involved in the sorting process of the mono-ubiquitinated endosomal cargo for degradation in the lysosome. Analysis of gene trap mice carrying lacZ in frame with Stam2 revealed beta-galactosidase activity in the enteric nervous system (both in the myenteric and submucosal plexus) throughout the digestive tract. STAM2 immunostaining confirmed that the observed beta-galactosidase activity coincided with high Stam2 expression.
View Article and Find Full Text PDF