Publications by authors named "Mariia Timofeeva"

The circulation in the total cavopulmonary connection (TCPC) is a low-energy system which operation and efficiency are subjected to multiple factors. Some retrospective studies report that the abnormal narrowing of vessels in the system, i.e.

View Article and Find Full Text PDF

Background: Blood platelets have evolved a complex mechanotransduction machinery to rapidly respond to hemodynamic conditions. A variety of microfluidic flow-based approaches have been developed to explore platelet mechanotransduction; however, these experimental models primarily focus on the effects of increased wall shear stress on platelet adhesion events and do not consider the critical effects of extensional strain on platelet activation in free flow.

Objectives: We report the development and application of a hyperbolic microfluidic assay that allows for investigation of platelet mechanotransduction under quasi-homogenous extensional strain rates in the absence of surface adhesions.

View Article and Find Full Text PDF

Blockages within arteries, called stenoses, are a common cause of coronary artery disease (CAD). Stenosis is a result of atherosclerotic plaque build-up limits blood flow and hence oxygen and nutrient supplies. Past studies on stenosed arterial flows often assumed stenosis to be axisymmetric in shape.

View Article and Find Full Text PDF

Background: Supraphysiological hemodynamics are a recognized driver of platelet activation and thrombosis at high-grade stenosis and in blood contacting circulatory support devices. However, whether platelets mechano-sense hemodynamic parameters directly in free flow (in the absence of adhesion receptor engagement), the specific hemodynamic parameters at play, the precise timing of activation, and the signaling mechanism(s) involved remain poorly elucidated.

Results: Using a generalized Newtonian computational model in combination with microfluidic models of flow acceleration and quasi-homogenous extensional strain, we demonstrate that platelets directly mechano-sense acute changes in free-flow extensional strain independent of shear strain, platelet amplification loops, von Willebrand factor, and canonical adhesion receptor engagement.

View Article and Find Full Text PDF

Using cell cultures of human origin for the propagation of influenza virus is an attractive way to preserve its glycosylation profile and antigenic properties, which is essential in influenza surveillance and vaccine production. However, only few cell lines are highly permissive to influenza virus, and none of them are of human origin. The barrier might be associated with host restriction factors inhibiting influenza growth, such as AnxA6 protein counteracting the process of influenza virion packaging.

View Article and Find Full Text PDF