Invest Ophthalmol Vis Sci
June 2009
Purpose: To investigate the effect of the tissue origin of stromal fibroblasts and epithelial cells on reconstructed corneas in vitro.
Methods: Four types of constructs were produced by the self-assembly approach using the following combinations of human cells: corneal fibroblasts/corneal epithelial cells, corneal fibroblasts/skin epithelial cells, skin fibroblasts/corneal epithelial cells, skin fibroblasts/skin epithelial cells. Fibroblasts were cultured with ascorbic acid to produce stromal sheets on which epithelial cells were cultured.
Purpose: The reepithelialization of the corneal surface is an important process for restoring the imaging properties of this tissue. The purpose of the present study was to characterize and validate a new human in vitro three-dimensional corneal wound healing model by studying the expression of basement membrane components and integrin subunits that play important roles during epithelial cell migration and to verify whether the presence of exogenous factors could accelerate the reepithelialization.
Methods: Tissue-engineered human cornea was wounded with a 6-mm biopsy punch, and the reepithelialization from the surrounding margins was studied.
Purpose: Regeneration of the corneal epithelium could be severely impaired in patients suffering from limbal stem cell deficiency. The purpose of this study was to evaluate the restoration of the corneal epithelium by grafting onto denuded corneas autologous limbal cells cultured on fibrin gels. The rabbit model was chosen to allow the microscopic evaluation over time after grafting.
View Article and Find Full Text PDFUveal melanoma is the most frequent primary intraocular tumor in the adult population. This malignancy has a high mortality rate and responds poorly to existing chemotherapy. Recently, the tumor environment has been found to exert a profound influence on drug response through cell interaction with components from the extracellular matrix (ECM).
View Article and Find Full Text PDFRecently, proinflammatory activities had been described for S100A8 and S100A9, two proteins found at inflammatory sites and within the neutrophil cytoplasm. In this study, we investigated the role of these proteins in neutrophil migration in vivo in response to LPS. LPS was injected into the murine air pouch, which led to the release of S100A8, S100A9, and S100A8/A9 in the pouch exudates that preceded accumulation of neutrophils.
View Article and Find Full Text PDFWe investigated the proinflammatory activities of S100A12 in the context of synovial inflammation. S100A12 levels were increased in the synovial fluids and plasma of patients with gout, rheumatoid arthritis, psoriatic arthritis, and undetectable in osteoarthritis, a noninflammatory disorder. S100A12 proved to induce neutrophil adhesion to fibrinogen via Mac-1 at concentrations similar to those found in the synovial fluids.
View Article and Find Full Text PDFS100A8 and S100A9 are small calcium-binding proteins that are highly expressed in neutrophil and monocyte cytosol and are found at high levels in the extracellular milieu during inflammatory conditions. Although reports have proposed a proinflammatory role for these proteins, their extracellular activity remains controversial. In this study, we report that S100A8, S100A9, and S100A8/A9 caused neutrophil chemotaxis at concentrations of 10(-12)-10(-9) M.
View Article and Find Full Text PDF