Publications by authors named "Mariette Andersson"

Morphology, composition and molecular structure of starch directly affect the functional properties. This study investigated the morphological, compositional, and molecular structure properties of starch from starch branching enzyme gene (SBE) and granule-bound starch synthase gene (GBSS) mutated potato, and their associations with thermal, pasting, and film-making properties. SBE mutations were induced in native variety Desiree while GBSS mutations were herestacked to a selected SBE mutated parental line.

View Article and Find Full Text PDF

Potato starch with mutations in starch branching enzyme genes (SBEI, SBEII) and granule-bound starch synthase gene (GBSS) was characterized for molecular and thermal properties. Mutations in GBSS were here stacked to a previously developed SBEI and SBEII mutation line. Additionally, mutations in the GBSS gene alone were induced in the wild-type variety for comparison.

View Article and Find Full Text PDF

Reserve starch from seeds and tubers is a crucial plant product for human survival. Much research has been devoted to quantitative and qualitative aspects of starch synthesis and its relation to abiotic factors of importance in agriculture. Certain aspects of genetic factors and enzymes influencing carbon assimilation into starch granules remain elusive after many decades of research.

View Article and Find Full Text PDF

Six cross-bred barley lines developed by a breeding strategy with the target to enhance the fructan synthesis activity and reduce the fructan hydrolysis activity were analyzed together with their parental lines, and a reference line (Gustav) to determine whether the breeding strategy also affected the content and molecular structure of amylopectin and β-glucan. The highest fructan and β-glucan content achieved in the novel barley lines was 8.6 % and 12 %, respectively (12.

View Article and Find Full Text PDF

Cultivated potato (Solanum tuberosum L.) is one of the most important staple food crops worldwide. Its tetraploid and highly heterozygous nature poses a great challenge to its basic research and trait improvement through traditional mutagenesis and/or crossbreeding.

View Article and Find Full Text PDF

To cope with cold stress, plants have developed antioxidation strategies combined with osmoprotection by sugars. In potato (Solanum tuberosum) tubers, which are swollen stems, exposure to cold stress induces starch degradation and sucrose synthesis. Vacuolar acid invertase (VInv) activity is a significant part of the cold-induced sweetening (CIS) response, by rapidly cleaving sucrose into hexoses and increasing osmoprotection.

View Article and Find Full Text PDF

Environmental pollution by synthetic polymers is a global problem and investigating substitutes for synthetic polymers is a major research area. Starch can be used in formulating bioplastic materials, mainly as blends or composites with other polymers. The major drawbacks of using starch in such applications are water sensitivity and poor mechanical properties.

View Article and Find Full Text PDF

Background: The genetic diversity and population structure of breeding germplasm is central knowledge for crop improvement. To gain insight into the genetic potential of the germplasm used for potato breeding in a Nordic breeding program as well as all available accessions from the Nordic genebank (NordGen), 133 potato genotypes were genotyped using the Infinium Illumina 20 K SNP array. After SNP filtering, 11 610 polymorphic SNPs were included in the analysis.

View Article and Find Full Text PDF

We have established a DNA-free genome editing method via ribonucleoprotein-based CRISPR/Cas9 in cultivated tomato and obtained mutant plants regenerated from transfected protoplasts with a high mutation rate. The application of genome editing as a research and breeding method has provided many possibilities to improve traits in many crops in recent years. In cultivated tomato (Solanum lycopersicum), so far only stable Agrobacterium-mediated transformation carrying CRISPR/Cas9 reagents has been established.

View Article and Find Full Text PDF
Article Synopsis
  • Recent advancements in genome editing techniques for plant science are significant and rapidly growing.
  • In particular, crops like potatoes are now progressing from research to practical applications, involving TALEN and CRISPR technologies.
  • These advancements are expected to lead to commercial cultivation soon, enhancing agricultural productivity.
View Article and Find Full Text PDF

Facing the challenges of the world's food sources posed by a growing global population and a warming climate will require improvements in plant breeding and technology. Enhancing crop resiliency and yield via genome engineering will undoubtedly be a key part of the solution. The advent of new tools, such as CRIPSR/Cas, has ushered in significant advances in plant genome engineering.

View Article and Find Full Text PDF

DNA-free genome editing was used to induce mutations in one or two branching enzyme genes (Sbe) in tetraploid potato to develop starch with an increased amylose ratio and elongated amylopectin chains. By using ribonucleoprotein (RNP) transfection of potato protoplasts, a mutation frequency up to 72% was achieved. The large variation of mutations was grouped as follows: Group 1 lines with all alleles of Sbe1 mutated, Group 2 lines with all alleles of Sbe1 as well as two to three alleles of Sbe2 mutated and Group 3 lines having all alleles of both genes mutated.

View Article and Find Full Text PDF

To determine the internal structure of barley starch without amylopectin isolation, whole starch was hydrolyzed using β-amylase to remove the linear amylose and obtain β-limit dextrins (β-LDs). The β-LDs were treated with extensive α-amylase to prepare α-limit dextrins (α-LDs), and the α-LDs were further hydrolyzed with β-amylase into building blocks. The chain-length distribution of β-LD and building block composition were analyzed by size-exclusion chromatography and anion-exchange chromatography.

View Article and Find Full Text PDF

The cultivated potato is tetraploid with four probably equivalent loci for each gene. A potato variety is furthermore commonly genetically heterogeneous and selected based on a beneficial genetic context which is maintained by clonal propagation. When introducing genetic changes by genome editing it is then desirable to achieve edits in all four loci for a certain gene target.

View Article and Find Full Text PDF

Polyphenol Oxidases (PPOs) catalyze the conversion of phenolic substrates to quinones, leading to the formation of dark-colored precipitates in fruits and vegetables. This process, known as enzymatic browning, is the cause of undesirable changes in organoleptic properties and the loss of nutritional quality in plant-derived products. In potato ( L.

View Article and Find Full Text PDF

Breeding for improved crop quality traits can affect non-target traits related to growth and resource use, and these effects may vary in different cultivation conditions (e. g., greenhouse vs.

View Article and Find Full Text PDF

Clustered regularly interspaced short palindromic repeats and CRISPR-associated protein-9 (CRISPR-Cas9) can be used as an efficient tool for genome editing in potato (Solanum tuberosum). From both a scientific and a regulatory perspective, it is beneficial if integration of DNA in the potato genome is avoided. We have implemented a DNA-free genome editing method, using delivery of CRISPR-Cas9 ribonucleoproteins (RNPs) to potato protoplasts, by targeting the gene encoding a granule bound starch synthase (GBSS, EC 2.

View Article and Find Full Text PDF

The importance of a plastidial soluble inorganic pyrophosphatase (psPPase) and an ATP/ADP translocator (NTT) for starch composition and tuber formation in potato (Solanum tuberosum) was evaluated by individual and simultaneous down-regulation of the corresponding endogenous genes. Starch and amylose content of the transgenic lines were considerably lower, and granule size substantially smaller, with down-regulation of StpsPPase generating the most pronounced effects. Single-gene down-regulation of either StpsPPase or StNTT resulted in increased tuber numbers per plant and higher fresh weight yield.

View Article and Find Full Text PDF

Tubers from a genetically modified high-amylose line T-2012 and its parental potato cultivar Dinamo were analyzed for resistant starch (RS) and dietary fiber (DF) after cooking and cold storage. For uncooked potatoes, the high-amylose tubers (30% of dry matter, DM) had much lower RS than the parent tubers (56% of DM). However, after cooking, the high-amylose tubers gave more RS (13% of DM) than the parent (4% of DM), and the RS level increased further to about 20% of DM after 1 day of cold storage.

View Article and Find Full Text PDF

Seed oils of many sp. contain >90% of medium-chain fatty acids, such as decanoic acid (10:0). These seed oils, which are among the most compositionally variant in the plant kingdom, arise from specialized fatty acid biosynthetic enzymes and specialized acyltransferases.

View Article and Find Full Text PDF

Altered starch quality with full knockout of GBSS gene function in potato was achieved using CRISPR-Cas9 technology, through transient transfection and regeneration from isolated protoplasts. Site-directed mutagenesis (SDM) has shown great progress in introducing precisely targeted mutations. Engineered CRISPR-Cas9 has received increased focus compared to other SDM techniques, since the method is easily adapted to different targets.

View Article and Find Full Text PDF

Tuber and root crops virtually exclusively accumulate storage products in the form of carbohydrates. An exception is yellow nutsedge (Cyperus esculentus) in which tubers have the capacity to store starch and triacylglycerols (TAG) in roughly equal amounts. This suggests that a tuber crop can efficiently handle accumulation of energy dense oil.

View Article and Find Full Text PDF

Lysophosphatidic acid acyltransferase (LPAT) catalyzes acylation of the sn-2 position on lysophosphatidic acid by an acyl CoA substrate to produce the phosphatidic acid precursor of polar glycerolipids and triacylglycerols (TAGs). In the case of TAGs, this reaction is typically catalyzed by an LPAT2 from microsomal LPAT class A that has high specificity for C18 fatty acids containing Δ9 unsaturation. Because of this specificity, the occurrence of saturated fatty acids in the TAG sn-2 position is infrequent in seed oils.

View Article and Find Full Text PDF

High-amylose potato starches were produced through genetic modification resulting in changed granule morphology and composition, with higher amylose content and increased chain length of amylopectin. The increased amylose content and structural changes in amylopectin enhanced film-forming behavior and improved barrier and tensile properties in starch films. The molecular structure in these starches was related to film-forming properties.

View Article and Find Full Text PDF

Potato is the third largest food crop in the world, however, the high degree of heterozygosity, the tetrasomic inheritance and severe inbreeding depression are major difficulties for conventional potato breeding. The rapid development of modern breeding methods offers new possibilities to enhance breeding efficiency and precise improvement of desirable traits. New site-directed mutagenesis techniques that can directly edit the target genes without any integration of recombinant DNA are especially favorable.

View Article and Find Full Text PDF