Only ~20% of heavy drinkers develop alcohol cirrhosis (AC). While differences in metabolism, inflammation, signaling, microbiome signatures and genetic variations have been tied to the pathogenesis of AC, the key underlying mechanisms for this interindividual variability, remain to be fully elucidated. Induced pluripotent stem cell-derived hepatocytes (iHLCs) from patients with AC and healthy controls differ transcriptomically, bioenergetically and histologically.
View Article and Find Full Text PDFThe proliferation and differentiation of hepatic progenitor cells (HPCs) drive the homeostatic renewal of the liver under diverse conditions. Liver regeneration is associated with an increase in Axin2Cnr1 HPCs, along with a marked increase in the levels of the endocannabinoid anandamide (AEA). But the molecular mechanism linking AEA signaling to HPC proliferation and/or differentiation has not been explored.
View Article and Find Full Text PDFAlcohol withdrawal is a clinically important consequence and potential driver of Alcohol Use Disorder. However, susceptibility to withdrawal symptoms, ranging from craving and anxiety to seizures and delirium, varies greatly. Selectively bred Withdrawal Seizure-Prone (WSP) and Seizure-Resistant (WSR) mice are an animal model of differential susceptibility to withdrawal and phenotypes with which withdrawal severity correlates.
View Article and Find Full Text PDFBackground: A salient effect of addictive drugs is to hijack the dopamine reward system, an evolutionarily conserved driver of goal-directed behavior and learning. Reduced dopamine type 2 receptor availability in the striatum is an important pathophysiological mechanism for addiction that is both consequential and causal for other molecular, cellular, and neuronal network differences etiologic for this disorder. Here, we sought to identify gene expression changes attributable to innate low expression of the gene in the striatum and specific to striatal indirect medium spiny neurons (iMSNs).
View Article and Find Full Text PDFGenome-wide association studies (GWAS) of complex, heritable, behavioral phenotypes have yielded an incomplete accounting of the genetic influences. The identified loci explain only a portion of the observed heritability, and few of the loci have been shown to be functional. It is clear that current GWAS techniques overlook key components of phenotypically relevant genetic variation, either because of sample size, as is frequently asserted, or because of methodology.
View Article and Find Full Text PDFObjective: The Health in All Policies strategy aims to engage every policy domain in health promotion. The more socially disadvantaged groups are usually more affected by potential negative impacts of policies if they are not health oriented. The built environment represents an important policy domain and, apart from its housing component, its impact on health inequalities is seldom assessed.
View Article and Find Full Text PDFBackground: Animal and human studies indicate that GABBR1, encoding the GABAB1 receptor subunit, and SLC6A1, encoding the neuronal gamma-aminobutyric acid (GABA) transporter GAT1, play a role in addiction by modulating synaptic GABA. Therefore, variants in these genes might predict risk/resilience for alcoholism.
Methods: This study included 3 populations that differed by ethnicity and alcoholism phenotype: African American (AA) men: 401 treatment-seeking inpatients with single/comorbid diagnoses of alcohol and drug dependence, 193 controls; Finnish Caucasian men: 159 incarcerated alcoholics, half with comorbid antisocial personality disorder, 181 controls; and a community sample of Plains Indian (PI) men and women: 239 alcoholics, 178 controls.
According to a recent IARC Working Group report, alcohol consumption is causally related to an increased risk of cancer of the upper aerodigestive tract, liver, colorectum, and female breast [R. Baan, K. Straif, Y.
View Article and Find Full Text PDFHere, we characterize the mutant transcripts resulting from bypass of an 8,5'-cyclo-2'-deoxyadenosine (cyclo-dA) or cyclobutane pyrimidine dimer (CPD) by human RNA polymerase II (Pol II) in vivo. With the cyclo-dA lesion, we observed two new types of mutant transcripts. In the first type, the polymerase inserted uridine opposite the lesion and then misincorporated adenosine opposite the template deoxyadenosine downstream (5') of the lesion.
View Article and Find Full Text PDF8,5'-Cyclo-2'-deoxypurine (cPu) lesions result from the action of the hydroxyl radical on DNA. These lesions represent a unique class of oxidative DNA lesions in that they are repaired by the nucleotide excision repair (NER) pathway but not by base excision repair (BER) or direct repair. Previous work has shown that cyclopurines can block mammalian DNA and RNA polymerases.
View Article and Find Full Text PDFBrain Res Mol Brain Res
January 1998
Expression of the DNA mismatch repair (MMR) pathway was examined in the adult and developing rat brain. Rat homologues of human GTBP and MSH2, which are essential components of the post-replicative DNA MMR system, were identified in nuclear extracts from the adult and developing rat brain. Developmental studies showed that both GTBP and MSH2 levels were higher in nuclei isolated from the embryonic brain (day 16) than adult brain.
View Article and Find Full Text PDFDNA repair is essential for maintaining the integrity of the nucleotide sequence of cellular DNA over time. Although much information has accumulated recently on the mechanisms of DNA repair in cultured cells, little is known about the DNA repair capabilities of cells in the adult brain. In the present study, we have investigated the capacity of nuclear extracts from adult rodent brain neurons to carry out DNA mismatch repair.
View Article and Find Full Text PDFThe 2-deoxyglucose technique was used to determine local cerebral glucose utilization (LCGU) in over 50 brain regions of rats physically dependent upon ethanol and compared to those of acutely intoxicated and those undergoing an overt ethanol-withdrawal syndrome. Dependent-intoxicated rats (average blood ethanol concentration 64 mM) had decreased LCGU in 13/54 regions, including those associated with the limbic system, cerebellum, and motor system. The ethanol withdrawal syndrome was associated with 17/50 gray regions showing an increase, including regions involved with motor function, auditory system, and mammillary bodies-anterior thalamus-cingulate cortex pathway.
View Article and Find Full Text PDFIn the mammalian brain, there are multiple catalytic subunits for the Ca(2+)- and calmodulin-dependent protein phosphatase [also called protein phosphatase 2B (PP-2B) and calcineurin] that are derived from two structural genes. The coding sequences of these two genes are distinguished by the absence (PP2B alpha 1) or the presence (PP2B alpha 2) of an amino terminus containing polyproline. Both of these genes can produce intragenic isoforms through alternative splicing.
View Article and Find Full Text PDFThe cloning and characterization of cDNAs for the catalytic subunit of calcineurin (CN) from murine and human brain libraries were carried out using nonisotopic methods. A murine cDNA clone encoding a protein of 521 amino acids (Mr approximately 58,650) was isolated; overlapping clones established a 3'-untranslated region of 554 base pairs preceding the poly(A) tail. Homologous cDNAs from human brain showed greater than 92% nucleotide sequence identity in both coding and non-coding regions with greater than 99% conservation of amino acid sequence.
View Article and Find Full Text PDFAdministration of ethanol to Sprague-Dawley rats has been shown to produce a defect in lymphocyte proliferation in response to concanavalin A. Because a critical element in T-cell proliferation is the production of interleukin-2, experiments were designed to evaluate the influence of ethanol on the production and utilization of interleukin-2 by spleen cells from ethanol-treated animals. To ensure that changes in spleen cell responses to mitogenic stimulation were not simply caused by a loss of responding T cells, we tested nylon wool-nonadherent cells.
View Article and Find Full Text PDFThe diazepam withdrawal syndrome in rats was characterized behaviorally by an increase in spontaneous motor activity, slight body tremor and a lack of convulsions. The 2-deoxyglucose (2-DG) technique was used to measure quantitatively cerebral glucose utilization during diazepam withdrawal and revealed changes in glucose utilization in 30% of the 54 structures evaluated. Areas of increased glucose utilization included medial geniculate, inferior colliculus, visual cortex, mammillary body, dorsal hippocampus, cerebellar flocculus, and zona reticulata and globus pallidus, olfactory cortex, nucleus accumbens and internal capsule.
View Article and Find Full Text PDFThe alterations in lymphoid cell numbers and lymphocyte function due to administration of ethanol was found to be associated with high levels of circulating corticosteroids. The role of corticosteroids in the ethanol-induced alterations in the immune system was studied by administering ethanol to adrenalectomized rats. The results of these experiments showed that the ethanol-induced loss of cells from the thymus was not completely prevented by adrenalectomy and the ethanol-induced loss of cells from the spleen was not affected by adrenalectomy.
View Article and Find Full Text PDFThe phenobarbital withdrawal syndrome in rats is characterized by tremors, arched back, weight loss and hyperactivity. This syndrome is shown to be associated with both general and localized increases in cerebral glucose utilization. An increase in glucose utilization (significant at the P less than or equal to 0.
View Article and Find Full Text PDFPrevious study findings from this laboratory and other laboratories have established that ethanol administration to experimental animals or ingestion by human beings results in many changes in the immune system. The major effort in this laboratory is the study of the mechanisms by which ethanol down-regulates the responses of thymus-derived lymphocytes. By using a rat model of ethanol intoxication we have described a defect in lymphocyte proliferation to concanavalin A.
View Article and Find Full Text PDFAn inhalation method of ethanol administration was used to study the effects of 14 days of ethanol administration on the immune and hematopoietic systems of the rat. A decrease in cellularity was found in the spleen, thymus, and bone marrow of ethanol-treated rats. Although the red blood cell count, white blood cell count, and hemoglobin concentration were not significantly different between treatment and control groups, treatment with ethanol altered the relative proportion of lymphocytes and polymorphonuclear leukocytes in the peripheral blood.
View Article and Find Full Text PDFThe effects of acute ethanol administration on glucose utilization in the CNS of rat were studied using the 2-deoxyglucose technique. Cerebral glucose utilization was determined for 53 brain regions at peak and descending blood ethanol concentrations averaging 14, 26 and 66 mM. Decreased glucose utilization was the predominant finding and was observed in 20% of the regions evaluated, with median raphe, vestibular nucleus, cerebellar vermis, and various structures associated with the auditory system showing the greatest reductions.
View Article and Find Full Text PDF