Publications by authors named "Mariena van der Plas"

In this study, we report the degradation of smooth and rough lipopolysaccharides (LPS) from Gram-negative bacteria and of lipoteichoic acid (LTA) from Gram-positive bacteria by peptide-coated TiO nanoparticles (TiO NPs). While bare TiO NPs displayed minor binding to both LPS and LTA, coating TiO NPs with the antimicrobial peptide LL-37 dramatically increased the level of binding to both LPS and LTA, decorating these uniformly. Importantly, peptide coating did not suppress reactive oxygen species generation of TiO NPs; hence, UV illumination triggered pronounced degradation of LPS and LTA by peptide-coated TiO NPs.

View Article and Find Full Text PDF

Photocatalytic nanoparticles offer antimicrobial effects under illumination due to the formation of reactive oxygen species (ROS), capable of degrading bacterial membranes. ROS may, however, also degrade human cell membranes and trigger toxicity. Since antimicrobial peptides (AMPs) may display excellent selectivity between human cells and bacteria, these may offer opportunities to effectively "target" nanoparticles to bacterial membranes for increased selectivity.

View Article and Find Full Text PDF

Endogenous and bacterial proteases play important roles in wound healing and infection. Analysis of alterations in the low-molecular-weight peptidome by individual enzymes could therefore provide insight into proteolytic events occurring in wounds and may aid in the discovery of biomarkers. Using liquid chromatography with tandem mass spectrometry, we characterized the peptidome of plasma and acute wound fluids digested with human (neutrophil elastase and cathepsin G) and bacterial proteases ( LasB and V8).

View Article and Find Full Text PDF

Nanofiber-reinforced hydrogels have recently gained attention in biomedical engineering. Such three-dimensional scaffolds show the mechanical strength and toughness of fibers while benefiting from the cooling and absorbing properties of hydrogels as well as a large pore size, potentially aiding cell migration. While many of such systems are prepared by complicated processes where fibers are produced separately to later be embedded in a hydrogel, we here provide proof of concept for a one-step solution.

View Article and Find Full Text PDF

In a previous study, we developed electrospun antimicrobial microfiber scaffolds for wound healing composed of a core of zein protein and a shell containing polyethylene oxide. While providing a promising platform for composite nanofiber design, the scaffolds showed low tensile strengths, insufficient water stability, as well as burst release of the antimicrobial drug tetracycline hydrochloride, properties which are not ideal for the use of the scaffolds as wound dressings. Therefore, the aim of the present study was to develop fibers with enhanced mechanical strength and water stability, also displaying sustained release of tetracycline hydrochloride.

View Article and Find Full Text PDF

Proteolytic cleavage of thrombin generates C-terminal host defense peptides exerting multiple immunomodulatory effects in response to bacterial stimuli. Previously, we reported that thrombin-derived C-terminal peptides (TCPs) are internalized in monocytes and macrophages in a time- and temperature-dependent manner. In this study, we investigated which endocytosis pathways are responsible for the internalization of TCPs.

View Article and Find Full Text PDF

Conjugation with poly(ethylene glycol) ("PEGylation") is a widely used approach for improving the therapeutic propensities of peptide and protein drugs through prolonging bloodstream circulation, reducing toxicity and immunogenicity, and improving proteolytic stability. In the present study, we investigate how PEGylation affects the interaction of host defense peptides (HDPs) with bacterial lipopolysaccharide (LPS) as well as HDP suppression of LPS-induced cell activation. In particular, we investigate the effects of PEGylation site for KYE28 (KYEITTIHNLFRKLTHRLFRRNFGYTLR), a peptide displaying potent anti-inflammatory effects, primarily provided by its N-terminal part.

View Article and Find Full Text PDF

The normal wound healing process is characterised by proteolytic events, whereas infection results in dysfunctional activations by endogenous and bacterial proteases. Peptides, downstream reporters of these proteolytic actions, could therefore serve as a promising tool for diagnosis of wounds. Using mass-spectrometry analyses, we here for the first time characterise the peptidome of human wound fluids.

View Article and Find Full Text PDF

Wound infection is a common and serious medical condition with an unmet need for improved diagnostic tools. A peptidomic approach, aided by mass spectrometry and bioinformatics, could provide novel means of identifying new peptide biomarkers for wound healing and infection assessment. Wound fluid is suitable for peptidomic analysis since it is both intimately tied to the wound environment and is readily available.

View Article and Find Full Text PDF
Article Synopsis
  • Thrombin-derived C-terminal peptides (TCPs), particularly TCP96, play a role in aggregating bacteria and their components, impacting how the immune system responds to infections.
  • Research showed that recombinant TCP96 can aggregate both Gram-negative and Gram-positive bacteria, enhancing the effects of bacterial killing and permeabilization.
  • Additionally, TCP96 reduces inflammation triggered by lipopolysaccharides (LPS) in human cells and mouse models, indicating its potential as a therapeutic agent against bacterial infections.
View Article and Find Full Text PDF

Effects of size and charge of anionic nanoclays on their interactions with bacteria-mimicking lipid membranes, bacterial lipopolysaccharide (LPS), and Gram-negative bacteria were investigated using ellipsometry, dynamic light scattering, ζ-potential measurements, and confocal microscopy combined with Live/Dead staining. Based on particle size and charge density, three different anionic hectorite nanoclays were employed, and investigated in the presence and absence of the net cationic human antimicrobial peptide LL-37 (LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES). In the absence of this peptide, the nanoclays were found not to bind to similarly anionic bacteria-mimicking model phospholipid membranes, nor to destabilize these.

View Article and Find Full Text PDF

The antimicrobial effects of Laponite nanoparticles with or without loading of the antimicrobial peptide LL-37 was investigated along with their membrane interactions. The study combines data from ellipsometry, circular dichroism, fluorescence spectroscopy, particle size/ζ potential measurements, and confocal microscopy. As a result of the net negative charge of Laponite, loading of net positively charged LL-37 increases with increasing pH.

View Article and Find Full Text PDF

The disease burden of failing skin repair and non-healing ulcers is extensive. There is an unmet need for new diagnostic approaches to better predict healing activity and wound infection. Uncontrolled and excessive protease activity, of endogenous or bacterial origin, has been described as a major contributor to wound healing impairments.

View Article and Find Full Text PDF

Host-defense peptides play a fundamental role in the innate immune system by modulating inflammatory responses. Previously, it was shown that the thrombin derived host-defense peptide GKY25 inhibits LPS-induced responses of monocytes and macrophages , and . In this study, the effect of GKY25 on the interaction of monocytes/macrophages with Gram-negative bacteria was explored.

View Article and Find Full Text PDF

Effective control of endotoxins and bacteria is crucial for normal wound healing. During injury, the key enzyme thrombin is formed, leading to generation of fibrin. Here, we show that human neutrophil elastase cleaves thrombin, generating 11-kDa thrombin-derived C-terminal peptides (TCPs), which bind to and form amorphous amyloid-like aggregates with both bacterial lipopolysaccharide (LPS) and gram-negative bacteria.

View Article and Find Full Text PDF

Pseudomonas aeruginosa is an opportunistic pathogen known for its immune evasive abilities amongst others by degradation of a large variety of host proteins. Here we show that digestion of thrombin by P. aeruginosa elastase leads to the release of the C-terminal thrombin-derived peptide FYT21, which inhibits pro-inflammatory responses to several pathogen-associated molecular patterns in vitro and in vivo by preventing toll-like receptor dimerization and subsequent activation of down-stream signalling pathways.

View Article and Find Full Text PDF

Host defense peptides have recently gained much interest as novel anti-infectives owing to their ability to kill bacteria and simultaneously modulate host cell responses. The cationic host defense peptide GKY25 (GKYGFYTHVFRLKKWIQKVIDQFGE), derived from the C terminus of human thrombin, inhibits proinflammatory responses in vitro and in vivo, but the mode of action is unclear. In this study, we show that GKY25, apart from binding bacterial LPS, also interacts directly with monocytes and macrophages in vitro, ex vivo, and in vivo.

View Article and Find Full Text PDF

Sepsis and septic shock remain important medical problems with high mortality rates. Today's treatment is based mainly on using antibiotics to target the bacteria, without addressing the systemic inflammatory response, which is a major contributor to mortality in sepsis. Therefore, novel treatment options are urgently needed to counteract these complex sepsis pathologies.

View Article and Find Full Text PDF

Maggots of the blowfly Lucilia sericata are used for the treatment of chronic wounds. As haemostatic processes play an important role in wound healing, this study focused on the effects of maggot secretions on coagulation and fibrinolysis. The results showed that maggot secretions enhance plasminogen activator-induced formation of plasmin and fibrinolysis in a dose- and time-dependent manner.

View Article and Find Full Text PDF

Gram-negative sepsis is accompanied by a disproportionate innate immune response and excessive coagulation mainly induced by endotoxins released from bacteria. Due to rising antibiotic resistance and current lack of other effective treatments there is an urgent need for new therapies. We here present a new treatment concept for sepsis and endotoxin-mediated shock, based on host defense peptides from the C-terminal part of human thrombin, found to have a broad and inhibitory effect on multiple sepsis pathologies.

View Article and Find Full Text PDF

Objectives: Maggots of the blowfly Lucilia sericata are used for the treatment of chronic wounds. Previously we reported that maggot excretions/secretions (ES) break down Staphylococcus aureus biofilms but do not kill the bacteria. As many antibiotics are not effective against biofilms we assessed the effect of combinations of ES and antibiotics on S.

View Article and Find Full Text PDF

Background: Maggots of the blowfly Lucilia sericata are used for the treatment of chronic wounds. Earlier we reported maggot secretions to inhibit pro-inflammatory responses of human monocytes. The aim of this study was to investigate the effect of maggot secretions on the differentiation of monocytes into pro-inflammatory (MØ-1) and anti-inflammatory/pro-angiogenic macrophages (MØ-2) as these cells play a central role in wound healing.

View Article and Find Full Text PDF

Objectives: Lucilia sericata maggots are successfully used for treating chronic wounds. As the healing process in these wounds is complicated by bacteria, particularly when residing in biofilms that protect them from antibiotics and the immune system, we assessed the effects of maggot excretions/secretions (ES) on Staphylococcus aureus and Pseudomonas aeruginosa biofilms, the clinically most relevant species.

Methods: We assessed the effects of ES on biofilms using microtitre plate assays, on bacterial viability using in vitro killing and radial diffusion assays, and on quorum sensing systems using specific reporter bacteria.

View Article and Find Full Text PDF

There is renewed interest in the use of maggots (Lucilia sericata) to aid in healing of chronic wounds. In such wounds neutrophils precipitate tissue damage rather than contribute to healing. As the molecules responsible for the beneficial actions of maggots are contained in their excretions/secretions (ES), we assessed the effects of ES on functional activities of human neutrophils.

View Article and Find Full Text PDF