Significant progress in malaria control has been achieved through long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS), raising hopes for malaria elimination. However, emerging insecticide resistance threatens these gains. This study assessed the susceptibility of populations to public health insecticides, examined the frequencies of , , and mutations, and explored their associations with phenotypic resistance in Dielmo and Ndiop, Senegal.
View Article and Find Full Text PDFIn living tissues, cells express their functions following complex signals from their surrounding microenvironment. Capturing both hierarchical architectures at the micro- and macroscale, and anisotropic cell patterning remains a major challenge in bioprinting, and a bottleneck toward creating physiologically-relevant models. Addressing this limitation, a novel technique is introduced, termed Embedded Extrusion-Volumetric Printing (EmVP), converging extrusion-bioprinting and layer-less, ultra-fast volumetric bioprinting, allowing spatially pattern multiple inks/cell types.
View Article and Find Full Text PDFFor malaria control, the application of long-lasting insecticidal nets and indoor residual spraying has led to a significant reduction in morbidity and mortality. However, the sustainability of these gains is hampered by the increase in insecticide resistance. It is therefore judicious to evaluate new insecticide formulations.
View Article and Find Full Text PDF