Temperate freshwater fishes can experience large seasonal temperature fluctuations that could affect their exposure and sensitivity to trace metals. Yet, temperature effects are overlooked in ecotoxicology studies, especially for cold temperatures typical of the winter. In the present study, the effects of long-term cold acclimation on Cd bioaccumulation and toxicity were investigated in a freshwater fish, the banded killifish (Fundulus diaphanus).
View Article and Find Full Text PDFIn this study, we investigated the combined effects of temperature and nickel (Ni) contamination on liver mitochondria electron transport system (ETS) enzymes, citrate synthase (CS), phospholipid fatty acid composition and lipid peroxidation in rainbow trout (Oncorhynchus mykiss). Juvenile trout were acclimated for two weeks to two different temperatures (5˚C and 15˚C) and exposed to nickel (Ni; 520 μg/L) for three weeks. Using ratios of ETS enzymes and CS activities, our data suggest that Ni and an elevated temperature acted synergistically to induce a higher capacity for reduction status of the ETS.
View Article and Find Full Text PDFPressures from anthropogenic activities are causing degradation of estuarine and coastal ecosystems around the world. Trace metals are key pollutants that are released and can partition in a range of environmental compartments, to be ultimately accumulated in exposed biota. The level of pressure varies with locations and the range and intensity of anthropogenic activities.
View Article and Find Full Text PDFAquatic ecotoxicological risks associated with tetravalent metallic elements such as thorium (Th) are still poorly understood. Periphytic biofilm represents an important food source in aquatic environments; thus, such risks could severely affect nutrient and energy cycling in these ecosystems. The present study investigated the potential for Th to change the fatty acid composition of biofilm communities.
View Article and Find Full Text PDFEnviron Toxicol Chem
August 2020
Freshwater biofilms play an important role in aquatic ecosystems and are widely used to evaluate environmental conditions. Little is known about the effects of temperature and metals on biofilm fatty acid composition. In the present study, we exposed a natural biofilm cultured in mesocosms to a gradient of nickel (Ni) concentrations at 15 and 21 °C for 28 d.
View Article and Find Full Text PDFIn this study, we tested the hypothesis that metal exposure affected the normal thermal response of cell membrane FA composition and of elongase and desaturase gene transcription levels. To this end, muscle and brain membrane FA composition and FA desaturase (fads2, degs2 and scd2) and elongase (elovl2, elovl5 and elovl6) gene transcription levels were analyzed in fathead minnows (Pimephales promelas) acclimated for eight weeks to 15, 25 or 30°C exposed or not to cadmium (Cd, 6μg/l) or nickel (Ni, 450 6μg/l). The response of membrane FA composition to temperature variations or metal exposure differed between muscle and brain.
View Article and Find Full Text PDFThe aim of this study was to investigate the combined effects of temperature and metal contamination (cadmium and nickel) on phospholipid fatty acid composition, antioxidant enzyme activities and lipid peroxidation in fish. Yellow perch were acclimated to two different temperatures (9°C and 28°C) and exposed either to Cd or Ni (respectively 4μg/L and 600μg/L) for seven weeks. Superoxide dismutase, catalase, glutathione-S-transferase, glutathione peroxidase activities and glutathione concentration were measured as indicators of antioxidant capacities, while malondialdehyde concentration was used as an indicator of lipid peroxidation.
View Article and Find Full Text PDF